Skip to main content
Log in

Transport properties of sulfide scales and sulfidation of metals and alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Defect and transport properties of metal sulfides are discussed, showing the differences from and similarities with oxide systems. The sulfidation kinetics and mechanism of metals and alloys are compared with oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner,Z. physik. Chem. 21, 25 (1933).

    Google Scholar 

  2. H. Schmalzried and A. Navrotsky,Festkörperthermodynamik (Verlag Chemie, Weinheim, 1975), p. 157.

    Google Scholar 

  3. G. W. Samsonow and S. W. Drozdowa,Sulfidy (Metallurgia, Moskwa, 1972).

    Google Scholar 

  4. L. M. Litz and J. M. Blocker, inHigh Temperature Materials Technology, J. E. Cambell and E. M. Sherwood, eds. (Wiley, New York, 1968), chap. 13.

    Google Scholar 

  5. G. W. Samsonowa,Fiziko-Chimiczeskije Swoistwa Okisłow (Metallurgia, Moskwa, 1978).

    Google Scholar 

  6. A. Davin and D. Coutsouradis,Cobalt 17, 23 (1962).

    Google Scholar 

  7. T. Rosenqvist,J. Iron Steel Inst. 179, 37 (1954).

    Google Scholar 

  8. H. Le Brusq and J. P. Delmaire,Rev. Inst. Htes. Temp. Refract. 11, 193 (1974).

    Google Scholar 

  9. H. Rau,J. Phys. Chem. Solids 28, 903 (1967);35, 1415 (1974).

    Google Scholar 

  10. H. Rau,J. Phys. Chem. Solids 39, 339 (1978).

    Google Scholar 

  11. H. Rau,J. Phys. Chem. Solids 37, 425 (1976).

    Google Scholar 

  12. H. Rau,J. Phys. Chem. 36, 1199 (1975).

    Google Scholar 

  13. H. Rau,J. Phys. Chem. 37, 931 (1976).

    Google Scholar 

  14. S. Mrowec, A. Stokłosa and K. Godlewski,Crystal Lattice Defects 5, 293 (1974).

    Google Scholar 

  15. P. Vallet and P. Raccah,Mem. Sci. Rev. Met. 62, 1 (1965).

    Google Scholar 

  16. M. Laffitte,Bull. Soc. Chim. France, no. 1223, 1211 (1959).

    Google Scholar 

  17. R. Y. Lin, C. Hu and Y. A. Chang,Met. Trans. 9B, 531 (1978).

    Google Scholar 

  18. H. Rau,J. Less-Common Met. 55, 205 (1977).

    Google Scholar 

  19. P. Kofstad and K. P. Lillerud,J. Electrochem. Soc. 127, 2410 (1980).

    Google Scholar 

  20. A. Z. Hed and D. S. Tannhauser,J. Electrochem. Soc. 114, 314 (1967).

    Google Scholar 

  21. A. Z. Hed and D. S. Tannhauser,J. Chem. Phys. 47, 2090 (1967).

    Google Scholar 

  22. H. Le Brusq, J. P. Delmaire and F. Marion,Compt. Rend. Acad. Sci. Paris 273, 139 (1971).

    Google Scholar 

  23. G. G. Libowitz,J. Solid State Chem. 1, 50 (1969).

    Google Scholar 

  24. M. Kleman,Mem. Sci. Rev. Met. 62, 457 (1965).

    Google Scholar 

  25. S. P. Mitoff,J. Chem. Phys. 35, 882 (1961).

    Google Scholar 

  26. Y. D. Tretyakov and R. A. Rapp,Trans. AIME 245, 1235 (1969).

    Google Scholar 

  27. M. L. Volpe and J. Reddy,J. Chem. Phys. 53, 1117 (1970).

    Google Scholar 

  28. B. Fisher and D. S. Tannhauser,J. Chem. Phys. 44, 1663 (1966).

    Google Scholar 

  29. N. G. Eror and J. B. Wagner Jr.,J. Phys. Chem. Solids 29, 1597 (1968).

    Google Scholar 

  30. N. Hansen and K. Anderko,Constitution of Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958).

    Google Scholar 

  31. B. E. F. Fender and F. D. Riley, Thermodynamic properties of Mn1−y O, inThe Chemistry of Extended Defects in Non-Metallic Solids (North-Holland, Amsterdam, 1970), p. 54.

    Google Scholar 

  32. M. Danielewski, S. Mrowec and A. Stokłosa,Solid State Ionics 1, 287 (1980).

    Google Scholar 

  33. E. Fryt, W. W. Smeltzer and J. S. Kirkaldy,J. electrochem. Soc. 126, 673 (1979).

    Google Scholar 

  34. G. G. Libowitz, Energetics of defect formation and interaction in nonstoichiometric pyrhotite, inReactivity of Solids (Chapman and Hall, London, 1972), p. 107.

    Google Scholar 

  35. R. C. Thiel,Phys. Status Solids 40, 17 (1970).

    Google Scholar 

  36. H. Rau,J. Phys. Chem. Solids 36, 1199 (1975).

    Google Scholar 

  37. K. N. Strafford and A. F. Hampton,J. Mat. Sci. 8, 1534 (1973).

    Google Scholar 

  38. M. Mikami, K. Igaki and N. Ohashi,J. Phys. Soc. Japan 32, 1217 (1972).

    Google Scholar 

  39. P. K. Kofstad and K. Lillerud,Oxid. Met. 17, 177 (1982).

    Google Scholar 

  40. N. Peterson, private communication.

  41. D. J. Young, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc. 120, 1221 (1973).

    Google Scholar 

  42. J. Bransky and J. M. Wimmer,J. Phys. Chem. Solids 33, 801 (1972).

    Google Scholar 

  43. C. M. Osburn and R. W. Vest,J. Phys. Chem. Solids 32, 1343 (1971).

    Google Scholar 

  44. R. H. Condit, R. R. Hobbins, and C. E. Birchenall,Oxid. Met. 8, 409 (1974).

    Google Scholar 

  45. M. Danielewski, S. Mrowec, and A. Stokłosa,Oxid. Met. 17, 77 (1982).

    Google Scholar 

  46. M. Danielewski and A. Stokłosa,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 27, 861 (1979).

    Google Scholar 

  47. R. A. Meussner and C. E. Birchenall,Corr. 13, 677 (1957).

    Google Scholar 

  48. E. T. Turkdogan,Trans. AIME 242, 1665 (1968).

    Google Scholar 

  49. A. Sterten,Corr. Sci. 14, 377 (1974).

    Google Scholar 

  50. J. Janowski, S. Mrowec, and A. Stokłosa,Bull. Acad. Polon. Sci. Ser., Sci. Chim. 29, 91 (1981).

    Google Scholar 

  51. P. Desmarescaux, J. B. Bocquet, and P. Lacombe,Bull. Soc. Chim. France 15, 1106 (1965).

    Google Scholar 

  52. S. M. Klotsman, A. N. Timofiejew, and J. S. Trachtenberg,Fiz. Mietałł.-Mietałłowied. 16, 743 (1963).

    Google Scholar 

  53. K. Fueki, Y. Oguri, and T. Mukaibo,Bull. Chem. Soc. Japan 41, 569 (1968).

    Google Scholar 

  54. B. D. Bastow and G. C. Wood,Oxid. Met. 9, 473 (1975).

    Google Scholar 

  55. K. Nishida, T. Narita, T. Tani, and G. Sasaki,Oxid. Met. 14, 65 (1980).

    Google Scholar 

  56. K. Ohta, K. Fueki, and T. Mukaibo,Denki Kagaku 38, 822 (1970).

    Google Scholar 

  57. F. A. Elrefaie and W. W. S. Smeltzer,Oxid. Met. 16, 267 (1981).

    Google Scholar 

  58. M. Danielewski,Bull. Acad. Polon. Sci. Ser. Sci. Chim. (in press).

  59. M. Danielewski, IXth International Congress on Metallic Corrosion, Toronto, June 1984.

  60. M. Danielewski, S. Mrowec, and K. Przybylski, Xth International Symposium on Reactivity of Solids, 27 Aug.–1 Sept. 1984, Dijon, France.

  61. H. Matzke, Diffusion in nonstoichiometric oxides, inNonstoichiometric Oxides, T. Sörensen, ed. (Academic Press, New York, 1981), p. 155.

    Google Scholar 

  62. T. Biegun, A. Brückman, and S. Mrowec,Oxid. Met. 12, 157 (1978).

    Google Scholar 

  63. K. N. Strafford and A. F. Hampton,J. Less-Common Met. 21, 305 (1970).

    Google Scholar 

  64. J. A. Chitty and W. W. Smeltzer,J. Electrochem. Soc. 120, 1362 (1973).

    Google Scholar 

  65. M. S. Kovalchenko, W. W. Syczew, D. Z. Jurczenko, and I. G. Tkaczenko,Izv. Akad. Nauk. USSR. Metally 5, 221 (1974).

    Google Scholar 

  66. R. E. Carter and F. D. Richardson,J. Met. 6, 1244 (1954).

    Google Scholar 

  67. W. K. Chen, N. L. Peterson, and W. T. Reeves,Phys. Rev. 186, 887 (1969).

    Google Scholar 

  68. S. Mrowec and K. Przybylski,Oxid. Met. 11, 383 (1977).

    Google Scholar 

  69. J. S. Choi and W. J. Moore,J. Phys. Chem. 66, 1308 (1962).

    Google Scholar 

  70. K. Fueki and J. B. Wagner,J. Electrochem. Soc. 112, 384 (1965).

    Google Scholar 

  71. R. Lindner and A. Akerströn,Z. Phys. Chem., N.F. 6, 162 (1956).

    Google Scholar 

  72. W. C. Hagel and A. U. Seybolt,J. Electrochem. Soc. 108, 1146 (1961).

    Google Scholar 

  73. J. B. Price and J. B. Wagner,J. Electrochem. Soc. 117, 242 (1970).

    Google Scholar 

  74. J. P. Bocquet, M. Kawahara, and P. Lacombe,Compt. Rend., Acad. Sci. Paris 265, 1318 (1967).

    Google Scholar 

  75. N. L. Peterson and W. K. Chen.,J. Phys. Chem. Solids 43, 29 (1982).

    Google Scholar 

  76. S. Mrowec and A. Stokłosa,Oxid. Met. 3, 291 (1971).

    Google Scholar 

  77. H. Rickert and W. Weppner,Z. Naturforsch. 29a, 1849 (1974).

    Google Scholar 

  78. P. F. Landler and K. L. Komarek,Trans. AIME 236, 138 (1966).

    Google Scholar 

  79. R. L. Levin and J. B. Wagner,Trans. AIME 233, 159 (1965).

    Google Scholar 

  80. L. W. Laub and J. B. Wagner,Oxid. Met. 7, 1 (1973).

    Google Scholar 

  81. R. H. Cambbell, Ph.D. thesis, Arizona State University, 1968.

  82. J. B. Price and J. B. Wagner,Z. Phys. Chem., N.F. 49, 257 (1966).

    Google Scholar 

  83. G. J. Koel and P. J. Gellings,Oxid. Met. 5, 3 (1972).

    Google Scholar 

  84. E. Fryt, S. Mrowec, and T. Walec,Oxid. Met. 7, 117 (1973).

    Google Scholar 

  85. J. M. Wimmer, R. N. Blumenthal, and J. Bransky,J. Phys. Chem. Solids,36, 269 (1975).

    Google Scholar 

  86. G. Petot-Ervas, O. Radji, and B. Sossa, Fourth Int. 1982 Conf. LATDIC, Dublin, Radiation Effects, 1982 (in press).

  87. A. Dominquez-Rodriguez, C. Monty, and J. Philibert,Phil. Mag. 46, 869 (1982).

    Google Scholar 

  88. J. Dereń, Z. Jarzebski, S. Mrowec, and T. Walec,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 19, 147 (1971).

    Google Scholar 

  89. J. Nowotny and J. B. Wagner,J. Am. Ceram. Soc. 56, 397 (1973).

    Google Scholar 

  90. Y. Nikeda and K. Nii,Trans. Japan Inst. Met. 17, 419 (1976).

    Google Scholar 

  91. R. Fahri and G. Petot-Ervas,J. Phys. Chem. Solids 39, 1169 (1978).

    Google Scholar 

  92. J. Nowotny and A. Sadowski,J. Am. Ceram. Soc. 62, 24 (1979).

    Google Scholar 

  93. A. Stokłosa,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 29, 141 (1981).

    Google Scholar 

  94. J. B. Price, Ph.D. thesis, Northwestern University, 1968.

  95. J. Bransky and N. M. Tallan,Vacuum Microbalance Technique, 8 (1969).

  96. A. Stokłosa and J. Stringer,Oxid. Met. 11, 277 (1977).

    Google Scholar 

  97. L. Czerski, S. Mrowec, and T. Werber,J. Electrochem. Soc. 109, 273 (1962).

    Google Scholar 

  98. J. Gerlach and H. J. Hamel,Metall. 23, 1006 (1969);24, 488 (1970).

    Google Scholar 

  99. S. Mrowec and T. Werber,Archiw. Hutn. 9, 289 (1964).

    Google Scholar 

  100. S. Mrowec, T. Werber, and M. Zastawnik,Corr. Sci. 6, 47 (1966).

    Google Scholar 

  101. K. Nishida, K. Nakayama, and T. Narita,Corr. Sci. 13, 759 (1973).

    Google Scholar 

  102. S. Mrowec and H. Rickert,Z. Phys. Chem., N.F. 28, 422 (1961).

    Google Scholar 

  103. J. Paidassi,Rev. Metall. 54, 569 (1957).

    Google Scholar 

  104. M. Schmahl, H. Baumann, and H. Schenck,Arch. Eisenhüttenwes. 29, 41 (1958).

    Google Scholar 

  105. D. K. Footner, D. R. Holmes, and D. Mortimer,Nature 216, 54 (1967).

    Google Scholar 

  106. S. Mrowec and K. Przybylski,Oxid. Met. 11, 365 (1977).

    Google Scholar 

  107. C. S. Giggins and F. S. Pettitt,Trans. AIME 245 2495 (1969).

    Google Scholar 

  108. L. Cadiou and J. Paidassi,Mem. Sci. Rev. Metall. 66, 217 (1969).

    Google Scholar 

  109. D. Caplan and G. I. Sproule,Oxid. Met. 9, 5 (1975).

    Google Scholar 

  110. K. Fueki and J. B. Wagner,J. Electrochem. Soc. 112, 970 (1965).

    Google Scholar 

  111. T. Narita and K. Nishida,Trans. Japan Inst. Met. 14, 439, 447 (1973).

    Google Scholar 

  112. S. Mrowec and T. Werber,Fiz. Mietałł.-Mietałłowied. 14, 770 (1962).

    Google Scholar 

  113. A. Devin,Cobalt 30, 19 (1966).

    Google Scholar 

  114. D. P. Whittle, S. K. Verma, and J. Stringer,Corros. Sci. 13, 247 (1973).

    Google Scholar 

  115. S. Mrowec, T. Walec, and T. Werber,Oxid. Met. 1, 93 (1969).

    Google Scholar 

  116. T. Narita and K. Nishida,Oxid. Met. 6, 157, 181 (1973).

    Google Scholar 

  117. T. Narita, W. W. Smeltzer, and K. Nishida,Oxid. Met. 17, 299 (1982).

    Google Scholar 

  118. S. Mrowec and M. Wedrychowska,Oxid. Met. 13, 481 (1979).

    Google Scholar 

  119. E. M. Jallouli, J. P. Larpin, M. Lambertin, and J. C. Colson,J. Electrochem. Soc. 126, 2254 (1979).

    Google Scholar 

  120. T. Biegun and A. Brückman,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 28, 377 (1980);29, 69 (1981).

    Google Scholar 

  121. W. W. Smeltzer, T. Narita, and K. Przybylski, High temperature sulfidation properties of iron-chromium-base alloys, inProc. Corrosion-Erosion, Wear of Materials in Emerging Fossil Energy Systems, A. V. Levy, ed. (NACE, Houston, 1982), p. 860.

    Google Scholar 

  122. E. Fryt, W. S. Bhide, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc. 126, 684 (1979).

    Google Scholar 

  123. T. Narita, K. Przybylski, and W. W. Smeltzer,Oxid. Met (in press).

  124. A. Kumar, M. Nasrallah, and D. Douglass,Oxid. Met. 8, 139 (1974).

    Google Scholar 

  125. K. P. Lillerud and P. Kofstad,J. Electrochem. Soc. 127, 2397 (1980).

    Google Scholar 

  126. S. K. Verma, D. P. Whittle, and J. Stringer,Oxid. Met. 5, 169 (1972).

    Google Scholar 

  127. K. N. Strafford and J. R. Bird,J. Less-Common Met. 68, 223 (1979).

    Google Scholar 

  128. M. Lambertin, A. Stokłosa, and W. W. Smeltzer,Oxid. Met. 15, 355 (1981).

    Google Scholar 

  129. P. Kofstad and A. Z. Hed,Werkstoffe und Korrosion 21, 894 (1970).

    Google Scholar 

  130. G. M. Ecer and G. H. Meier,Oxid. Met. 13, 119 (1979).

    Google Scholar 

  131. M. O'Keeffe and W. J. Moore,J. Chem. Phys. 36, 3009 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrowec, S., Przybylski, K. Transport properties of sulfide scales and sulfidation of metals and alloys. Oxid Met 23, 107–139 (1985). https://doi.org/10.1007/BF00659899

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659899

Key words

Navigation