Skip to main content
Log in

Local anaesthetic effects of benzene and structurally related molecules, including benzocaine, on the squid giant axon

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

(1). The effects of benzene and several of its derivatives on sodium currents in the voltage-clamped squid giant axon have been studied. Substances tested were benzene, aniline, benzyl alcohol, propiophenone, 4-aminopropiophenone, methyl benzoate, ethyl benzoate, and 4-amino ethyl benzoate (benzocaine). (2.) All substances tested reduced the sodium current in both intact axons and axons internally perfused with CsF. (3.) There were four major actions of benzene on the sodium current: (a) an increase in the resting level of inactivation, (b) an increase in the depolarization required to produce tha maximum current, (c) a decrease in the maximum sodium conductance, and (d) an increase in the rate of inactivation. (4.) 4-amino ethyl benzoate (benzocaine) had actions on the sodium current which were very similar to those of benzene with the exception that the rate of inactivation was scarcely affected and, at comparable shifts, the slope of the steady state inactivation curve was slightly smaller. (5.) The results obtained with the substances structurally intermediate between benzene and 4-amino ethyl benzoate allow some conclusions to be drawn as to the role of each functional group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chandler WK, Hodgkin AL, Meves H (1965) The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J Physiol 180:821–836

    Google Scholar 

  • Elliott JR, Haydon DA, hendry BM (1984a) Anaesthetic action of esters and ketones: evidence for an interaction with the sodium channel protein in squid axons. J Physiol 354:407–418

    Google Scholar 

  • Elliott JR, Haydon DA, Hendry BM (1984b) The significance of the molecular structure of benzocaine in relation to its suppression of sodium current in axons ofLoligo forbesi. J Physiol 357:51P

    Google Scholar 

  • Elliott JR, Haydon DA, Hendry BM (1984c) The asymmetrical effects of some ionized n-octyl derivatives on the sodium current of the giant axon ofLoligo forbesi. J Physiol 350:429–445

    Google Scholar 

  • Elliott JR, Haydon DA, Hendry BM, Needham D (1985) The inactivation of the sodium current in squid giant axons by hydrocarbons. Biophys J 48:617–622

    Google Scholar 

  • Gillespie JI, Meves H (1981) The effect of external potassium on the removal of sodium inactivation in squid giant axons. J Physiol 315:493–514

    Google Scholar 

  • Harper AA, MacDonald AG, Wann KT (1983) The effect of temperature on the nerve-blocking action of benzyl alcohol on the squid giant axon. J Physiol 338:51–60

    Google Scholar 

  • Haydon DA, Kimura JE (1981) Some effects of n-pentane on the sodium and potassium currents of the squid giant axon. J Physiol 312:57–70

    Google Scholar 

  • Haydon DA, Urban BW (1983a) The action of hydrocarbons and carbon tetrachloride on the sodium current of the squid giant axon. J Physiol 338:435–450

    Google Scholar 

  • Haydon DA, Urban BW (1983b) The action of alcohols and other non-ionic surface active substances on the sodium current of the squid giant axon. J Physiol 341:411–427

    Google Scholar 

  • Haydon DA, Urban BW (1983c) The effects of some inhalation anaesthetics on the sodium current of the squid giant axon. J Physiol 341:429–439

    Google Scholar 

  • Haydon DA, Requena J, Urban BW (1980) Some effects of aliphatic hydrocarbons on the electrical capacity and ionic currents of the squid giant axon membrane. J Physiol 309:229–245

    Google Scholar 

  • Haydon DA, Elliott JR, Hendry BM (1984) Effects of anaesthetics on the squid giant axon. In: Baker PF (ed) The squid axon, current topics in membranes and transport, vol 22. Academic Press, New York, pp 445–482

    Google Scholar 

  • Haydon DA, Elliott JR, Hendry BM, Urban BW (1986) The action of non-ionic anesthetic substances on voltage-gated ion conductances in squid giant axons. In: Miller KW, Roth SH (eds) Molecular and cellular mechanisms of anesthetics. Plenum Publishing Corporation, New York

    Google Scholar 

  • Hendry BM, Elliott JR, Haydon DA (1985a) The actions of some narcotic aromatic hydrocarbons on the ionic currents of the squid giant axon. Proc R Soc Lond Biol 224:389–397

    Google Scholar 

  • Hendry BM, Elliott JR, Haydon DA (1985b) Further evidence that membrane thickness influences voltage-gated sodium channels. Biophys J 47:841–845

    Google Scholar 

  • Hille B (1977) Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69:499–515

    Google Scholar 

  • Hille B (1978) Local anesthetic action on inactivation of the Na channel in nerve and skeletal muscle: Possible mechanisms for anti-arrhythmic agents. In: Morad M (ed) Biophysical aspects of cardiac muscle. Academic Press, New York, pp 55–74

    Google Scholar 

  • Hirche G (1985) Blocking and modifying actions of octanol on Na channels in frog myelinated nerve. Pflügers Arch 405:180–187

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Google Scholar 

  • Kendig JJ, Courtney KR, Cohen EN (1979) Anesthetics: Molecular correlates of voltage- and frequency-dependent sodium channel block in nerve. J Pharm Exp Ther 210:446–452

    Google Scholar 

  • Khodorov B (1980) Drug-induced blockage of gating and sodium currents in myelinated nerve. In: Salanki J (ed) Physiology of excitable membranes, advances in physiological sciences, vol 4. Pergamon Press, Oxford, pp 89–99

    Google Scholar 

  • Kimura JE, Meves H (1979) The effect of temperature on the asymmetrical charge movement in squid giant axons. J Physiol 289:479–500

    Google Scholar 

  • Narahashi T, Frazier DT, Takeno K (1976) Effects of calcium on the local anaesthetic suppression of ionic conductances in squid axon membranes. J Pharm Exp Ther 197:426–438

    Google Scholar 

  • Neumcke B, Schwarz W, Stampfli R (1981) Block of Na channels in the membrane of myelinated nerve by benzocaine. Pflügers Archiv 390:230–236

    Google Scholar 

  • Schwarz W, Palade PT, Hille B (1977) Local anesthetics: Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys J 20:343–368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, J.R., Haydon, D.A. & Hendry, B.M. Local anaesthetic effects of benzene and structurally related molecules, including benzocaine, on the squid giant axon. Pflugers Arch. 409, 589–595 (1987). https://doi.org/10.1007/BF00584658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584658

Key words

Navigation