Skip to main content
Log in

Vitamin D — Soltriol The heliogenic steroid hormone: Somatotrophic activator and modulator

Discoveries from histochemical studies lead to new concepts

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

Evidence from autoradiographic studies with 3H 1,25(OH)2 vitamin D3 (soltriol) about its many sites of nuclear binding and multiple actions suggests that the traditional view of “vitamin D and calcium” is too limited and requires modification. A new concept has been developed which proposes that the skin-derived hormone of sunshine, soltriol, is a somatotrophic activator and modulator that affects all vital systems. Regulation of calcium homeostasis is only one of its many actions. Target tissues for soltriol include not only bone, intestine and kidney, but also brain, spinal cord, pituitary, thyroid, endocrine pancreas, adrenal medulla, enteroendocrine cells, thymus, and male and female reproductive organs. Accordingly, actions of soltriol involve effects on autonomic and endocrine regulation with changes in tissue and blood hormone levels, innervation of skeletal muscle, immune and stress response, digestion, blood formation, fertility, pregnancy and lactation, general energy metabolism, mental processes and mood, and others. The skin-mediated transduction of short-wave sunlight induces a purposeful modulation of growth, reproduction and other biological activities in tune with the conditions of the sun cycle and season. Synthesis and actions of vitamin D3-soltriol are dependent not only on the amount of sunlight, but also on the availability of precursor in the skin and access of sunlight, the rate of hydroxylation in liver and kidney, and the modulation of these events by the endocrine status, in particular growth and reproduction. A concept of a five-level control of soltriol synthesis is proposed, in which the hydroxylation steps provide for a sensitive tuning. Relationships between the heliogenic skin-derived hormonal system and the helioprivic pineal-derived hormonal system are recognized and a comprehensive concept of the “endocrinology of sunlight and darkness” is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksnes L, Aarskog D (1982) Plasma concentrations of vitamin D metabolites in puberty: effect of sexual maturation and implications for growth. J Clin Endocrinol Metab 55:94–101

    Google Scholar 

  • Baksi SN, Kenney AD (1978) Does estradiol stimulate in vivo production of 1,25-dihydrovitamin D3 in the rat? Life Sci 22:787–791

    Google Scholar 

  • Bastillo L, Tanaka Y, Wineland MJ, DeLuca HF (1979) Synergistic effect of progesterone, testosterone and estradiol in the stimulation of chick renal 25-hydroxy-vitamin D-1a-hydroxylase. Endocrinology 104:1598–1601

    Google Scholar 

  • Bell NH (1985) Vitamin-D-endocrine system. J Clin Invest 76:1–6

    Google Scholar 

  • Brumbaugh PF, Hughes MR, Haussler MR (1975) Cytoplasmic and nuclear binding components for 1a,25-dihydroxyvitamin D3 in chick parathyroid glands. Proc Natl Acad Sci USA 72:4871–4875

    Google Scholar 

  • Christakos S, Norman AW (1980) Specific receptor/binding proteins for 1,25(OH)2-vitamin D3 in rat and human placenta. Fed Proc 39:560

    Google Scholar 

  • Clark SA, Stumpf WE, Sar M, DeLuca HF, Tanaka Y (1980) Target cells for 1,25 dihydroxyvitamin D3 in the pancreas. Cell Tissue Res 209:515–520

    Google Scholar 

  • Clark SA, Stumpf WE, Sar M (1981) Effects of 1,25 dihydroxyvitamin D3 on insulin secretion. Diabetes 30:382–386

    Google Scholar 

  • Clark SA, Dame MC, Kim YS, Stumpf WE, DeLuca HF (1985) 1,25-Dihydroxyvitamin D3 in teeth of rats and humans: receptors and nuclear localization. Anat Rec 212:250–254

    Google Scholar 

  • Clark SA, Boass A, Toverud SU (1986a) Development-related regulation of plasma 1,25(OH)2D3 concentration by calcium intake in rat pups. Bone Mineral 1:193–203

    Google Scholar 

  • Clark SA, D'Ercole AJ, Toverud SU (1986b) Somatomedin-C/insulin-like growth factor I and vitamin-induced growth. Endocrinology 119:1660–1665

    Google Scholar 

  • Clark SA, Stumpf WE, Bishop CW, DeLuca HF, Park DH, Joh TH (1986c) The adrenal: a new target organ of the calciotropic hormone 1,25 dihydroxyvitamin D3. Cell Tissue Res 234:299–302

    Google Scholar 

  • Clark SA, Stumpf WE, Sar M, DeLuca HF (1987) 1,25-Dihydroxyvitamin D3 target cells in immature pancreatic islets. Am J Physiol 253:E99-E105

    Google Scholar 

  • Colston K, Hirst M, Feldman D (1980) Organ distribution of the cytoplasmic 1,25 dihydroxycholecalciferol receptor in various mouse tissues. Endocrinology 107:1916–1922

    Google Scholar 

  • Cooper CW, Schwesinger WH, Mahgoub AM, Ontjes DA (1971) Thyrocalcitonin: stimulation of secretion by pentagastrin. Science 172:1238–1240

    Google Scholar 

  • Dokoh S, Donaldson CA, Marion SL, Pike JW, Haussler MR (1983) The ovary: a target for 1,25-dihydroxyvitamin D3. Endocrinology 112:200–206

    Google Scholar 

  • Lij C, Marx SJ (1981) Nucleaer uptake of 1,25 dihydroxy[3H]cholecalciferol in dispersed fibroblasts cultured from normal human skin. Proc Natl Acad Sci USA 78:2562–2566

    Google Scholar 

  • Esvelt RP, DeLuca HF, Wichman JK, Yishizawa S, Zurcher J, Sar M, Stumpf WE (1980) 1,25-Dihydroxyvitamin D3 stimulated increase of 7,8-didehydrocholesterol levels in rat skin. Biochemistry 19:6158–6161

    Google Scholar 

  • Feldman D, Chen T, Hirst M, Colston K, Karasek M, Cone C (1980) Demonstration of 1,25-dihydroxyvitamin D3 receptors in human skin biopsies. J Clin Endocrinol Metab 51:1463–1465

    Google Scholar 

  • Fraser DR, Kodicek E (1970) Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 228:764–766

    Google Scholar 

  • Gelbard HA, Stern PH, U'Prichard DC (1980) 1,25-Dihydroxyvitamin D3 nuclear receptors in pituitary. Science 209:1247–1249

    Google Scholar 

  • Gray RW (1981) Effects of age and sex on the regulation of plasma 1,25-(OH)2-D by phosphorus in the rat. Calcif Tissue Int 33:477–484

    Google Scholar 

  • Halloran BP, Barthell EN, DeLuca HF (1979) Vitamin D metabolism during pregnancy and lactation in the rat. Proc Natl Acad Sci USA 76:5549–5553

    Google Scholar 

  • Haussler MR (1986) Vitamin D receptors: nature and function. Annu Rev Nutr 6:527–562

    Google Scholar 

  • Haussler MR, Manolagas SC, Deftos LJ (1980) Evidence for a 1,25-dihydroxyvitamin D3 receptor-like macromolecule in rat pituitary. J Biol Chem 225:5007–5010

    Google Scholar 

  • Haussler MR, Manolagas SC, Deftos LJ (1982) Receptor for 1,25-dihydroxyvitamin D3 in GH3 pituitary cells. J Steroid Biochem 16:15–19

    Google Scholar 

  • Henry HL, Norman AW (1975) Studies on the mechanism of action of calciferol. VII. Localization of 1,25-dihydroxy-vitamin D3 in chick parathyroid glands. Biochem Biophys Res Commun 62:781–788

    Google Scholar 

  • Herting DC, Steenbock H (1955) Vitamin D and gastric secretion. J Nutrit 57:469–482

    Google Scholar 

  • Holick MF (1984) The photobiology of vitamin D3 in man. In: Kumar R (ed) Vitamin D. Basic and clinical aspects. Martinus Nijhoff, Boston, pp 197–216

    Google Scholar 

  • Hosomi J, Hosoi J, Abe E, Suda T, Kuroki T (1983) Regulation of terminal differentiation of cultured mouse epidermal cells by 1a,25-dihydroxyvitamin D3. Endocrinology 113:1950–1957

    Google Scholar 

  • Hughes MR, Haussler MR (1978) 1,25-Dihydroxyvitamin D3 receptors in parathyroid glands: preliminary characterization of cytoplasmic and nuclear binding components. J Biol Chem 253:1065–1073

    Google Scholar 

  • Jande SS, Maler L, Lawson DEM (1981) Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature 294:765–767

    Google Scholar 

  • Kim YS, Stumpf WE, Clark SA, Sar M, DeLuca HF (1983) Target cells for 1,25-dihydroxyvitamin D3 in developing rat incisor teeth. J Dent Res 62:58–59

    Google Scholar 

  • Kim YS, Clark SA, Stumpf WE, DeLuca HF (1985) Nuclear uptake of 1,25-dihydroxyvitamin D3 in developing rodent teeth: an autoradiographic study. Anat Rec 212:301–306

    Google Scholar 

  • Kream BE, Jose M, Yamada S, DeLuca HF (1977) A specific high-affinity binding macromolecule for 1,25-dihydroxyvitamin D3 in fetal bone. Science 197:1086–1088

    Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80:2587

    Google Scholar 

  • Levy FO, Eikvar L, Jute NHPM, Cervenka J, Yoganathan T, Hansson V (1985) Properties and compartmentalization of the testicular receptor for 1,25-dihydroxyvitamin D3. J Steroid Biochem 22:453–460

    Google Scholar 

  • Loomis WF (1967) Skin-pigment regulation of vitamin-D biosynthesis in man. Science 157:501–506

    Google Scholar 

  • Lorente F, Fontan G, Para P, Casas C, Garcia-Rodriguez MC, Ojeda JA (1976) Defective neutrophil motility in hypovitaminosis D rickets. Acta Paediatr Scand 65:695–699

    Google Scholar 

  • Manolagas SC (1985) Role of 1,25 dihydroxyvitamin D3 in the immune system. In: Norman AW, Schaefer K, Grigoleit H-G, Herrath vD (eds) Vitamin D. A chemical, biochemical and clinical update. Walter de Gruyter, Berlin, pp 199–208

    Google Scholar 

  • Manolagas SC, Taylor CM, Anderson DC (1979) High specific binding of 1,25-dihydroxycholecalciferol in bone cytosol. J Endocrinol 80:35–40

    Google Scholar 

  • Marche P, Cassier P, Mathieu H (1980) Intestinal calcium-binding protein. Cell Tissue Res 212:63–72

    Google Scholar 

  • Marx SJ (1984) Resistance to vitamin D. In: Kumar R (ed) Vitamin D. Basic and clinical aspects. Martinus Nijhoff, Boston, pp 721–745

    Google Scholar 

  • Menaker M (1985) Eyes-the second (and third) pineal glands? In: Evered D, Clark S (eds) Photoperiodism, melatonin and the pineal. Ciba Foundation Symposium 117. Pitman, London, pp 78–87

    Google Scholar 

  • Merke J, Kreussler W, Bier B, Ritz E (1983) Demonstration and characterization of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat. J Biochem 130:303–308

    Google Scholar 

  • Narbaitz R, Stumpf WE, Sar M, DeLuca HF, Tanaka Y (1980) Autoradiographic demonstration of target cells for 1,25 dihydroxycholecalciferol in the chick embryo chorioallantoic membrane, duodenum and parathyroid glands. Gen Comp Endocrinol 42:283–289

    Google Scholar 

  • Narbaitz R, Sar M, Stumpf WE, Huang S, DeLuca HF (1981) 1,25-Dihydroxyvitamin D3 target cells in rat mammary gland. Horm Res 15:263–270

    Google Scholar 

  • Narbaitz R, Stumpf WE, Sar M, DeLuca HF (1982) The distal nephron in the chick embryo as a target tissue for 1-alpha, 25-dihydroxycholecalciferol. Acta Anatomica 112:208–216

    Google Scholar 

  • Narbaitz R, Stumpf WE, Sar M, Huang S, DeLuca HF (1983) 1-alpha,25-dihydroxyvitamin D3 in bones from fetal rat. Calcif Tissue Int 35:177–182

    Google Scholar 

  • Norman AW (1979) Vitamin D. The calcium homeostatic steroid hormone. Academic Press, New York

    Google Scholar 

  • Norman AW, Frankel BJ, Heldt AM, Grodsky GM (1980) Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 209:823–825

    Google Scholar 

  • Norman AW, Roth J, Orci L (1982) The vitamin D endocrine system: steroid metabolism, hormone receptors, and biologial response (calcium binding protein). Endocrine Rev 3:331–366

    Google Scholar 

  • Ohsugi Y, Nakano T, Komori T, Ueno K, Sugawara Y, Fukushima M, Yamamoto T, Nishii Y, Masuda T, Matsuno M (1985) Effects of 1a-hydroxyvitamin D3 on the immune response. In: Norman AW, Schaefer K, Grigoleit H-G, Herrath vD (eds) Vitamin D. A chemical, biochemical and clinical update. Walter de Gruyter, Berlin, pp 209–218

    Google Scholar 

  • Pike J, Gooze L, Haussler M (1980) Biochemical evidence for 1,25-dihydroxyvitamin D receptor macromolecules in parathyroid, pancreatic, pituitary and placental tissues. Life Sci 26:407–414

    Google Scholar 

  • Reiter RJ (1986) The first, the second, and the third pineal gland. Neuroendocrinol Lett 8:1–4

    Google Scholar 

  • Rose SD, Holick MF (1985) Effects of 1,25-dihydroxyvitamin D3 on the function of rat anterior pituitary cells in primary culture. In: Norman AW, Schaefer K, Grigoleit H-G, Herrath vD (eds) Vitamin D. A chemical, biochemical and clinical update. Walter de Gruyter, Berlin, pp 253–254

    Google Scholar 

  • Roth J, Thorens B, Hunziger W, Norman AW, Orci L (1981) Vitamin D-dependent Calcium binding protein: immunochemical localization in chick kidney. Science 214:197–199

    Google Scholar 

  • Sar M, Stumpf WE (1981) Combined autoradiography and immunohistochemistry for simultaneous localization of radioactively labeled steroid hormone and antibodies in the brain. J Histochem Cytochem 29, 1A:201–206

    Google Scholar 

  • Sar M, Stumpf WE, DeLuca HF (1980) Thyrotropes in the pituitary are target cells for 1,25(OH)2 vitamin D3. Cell Tissue Res 209:161–166

    Google Scholar 

  • Sar M, Miller WE, Stumpf WE (1981) Effects of 1,25(OH)2 vitamin D3 on thyrotropin secretion in vitamin D deficient male rats. Physiologist 24:70

    Google Scholar 

  • Sonnenberg J, Luine VN, Krey CR, Christakos S (1986) 1,25-Dihydroxyvitamin D3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology 118:1433–1439

    Google Scholar 

  • Spanos E, Colston KW, Evans IMS, Galante LS, MacAuley SJ, MacIntyre I (1976) Effects of prolactin on vitamin D metabolism. Mol Cell Endocrinol 5:163–167

    Google Scholar 

  • Spencer EM, Tobiasson O (1977) The effect of hypophysectomy on 25-hydroxyvitamin D metabolism in the rat. In: Norman AW, Schaefer K, Coburn JW, DeLuca HF, Fraser D, Grigoleit H-G, Herrath vD (eds) Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism. Walter de Gruyter, Berlin, p 197

    Google Scholar 

  • Steenbock H, Herting DC (1955) Vitamin D and growth. J Nutr 57:449–468

    Google Scholar 

  • Ströder J, Franzen CH (1975) Die unspezifische Entzündungsreaktion bei Vitamin-D-Mangel-Rachitis. Klin Pädiatr 187:461–467

    Google Scholar 

  • Stumpf WE (1988a) The endocrinology of sunlight and darkness. Complementary roles of vitamin D and pineal hormones. Naturwissenschaften 75:247–251

    Google Scholar 

  • Stumpf WE (1988b) The first eye; and the second third and fourth eyes. Relationships between skin, pineal and lateral eyes. Neuroendocrinol Lett (in press)

  • Stumpf WE, Downs TW (1987) Nuclear receptors for 1,25(OH)2 vitamin D3 in thymus reticular cells studied by autoradiography. Histochemistry 87:367–369

    Google Scholar 

  • Stumpf WE, Jennes L (1984) The A-B-C (Allocortex-Brainstem-Core) circuitry of endocrine-autonomic integration and regulation. Relationships between estradiol sites of action and peptidergic-aminergic neural systems. Peptides 5(Suppl 1):221–226

    Google Scholar 

  • Stumpf WE, O'Brien LP (1987a) Autoradiographic studies with 3H 1,25 dihydroxyvitamin D3 in thyroid and associated tissues in the neck region. Histochemistry 87:53–58

    Google Scholar 

  • Stumpf WE, O'Brien LP (1987b) 1,25(OH)2 Vitamin D3 sites of action in the brain: an autoradiographic study. Histochemistry 87:393–406

    Google Scholar 

  • Stumpf WE, Sar M (1976) Autoradiographic localization of estrogen, androgen, progestin and glucocorticosteroid in “target tissues” and “non-target tissues”. In: Pasqualini J (ed) Receptors and mechanism of action of steroid hormones. Marcel Dekker, New York, pp 41–84

    Google Scholar 

  • Stumpf WE, Sar M (1981) Anatomical relationships between estrogen target sites and peptidergic-aminergic neurons: Multiple activation of heterogeneous systems (MAHS). Exp Brain Res (Suppl) 3:18–28

    Google Scholar 

  • Stumpf WE, Sar M, Joshi SG (1974) Estrogen target cells in the skin. Experientia 30:196–198

    Google Scholar 

  • Stumpf WE, Sar M, Keefer DA, Martinez-Vargas MC (1976) The anatomical substrate of neuroendocrine regulation as defined by autoradiography with 3H-estradiol, 3H-testosterone, 3H-dihydrotestosterone and 3H-progesterone. In: Anand Kumar TC (ed) Neuroendocrine regulation of fertility. Karger, Basel, pp 46–56

    Google Scholar 

  • Stumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF (1979) Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid. Science 206:1188–1190

    Google Scholar 

  • Stumpf WE, Sar M, Clark SA, Lieth E, DeLuca HF (1980a) Target neurons for 1,25(OH)2 vitamin D3 in brain and spinal cord. Neuroendocrinol Lett 2:297–301

    Google Scholar 

  • Stumpf WE, Sar M, Narbaitz R, Reid FA, DeLuca HF, Tanaka Y (1980b) Cellular and subcellular localization of 1,25 (OH)2 vitamin D3 in rat kidney: comparison with that of parathyroid hormone and estradiol. Proc Natl Acad Sci USA 77:1149–1153

    Google Scholar 

  • Stumpf WE, Sar M, DeLuca HF (1981a) Sites of action of 1,25(OH)2 vitamin D3 identified by thaw-mount autoradiography. In: Cohn CV, Talmage RV, Matthews JrVL (eds) Hormonal control of calcium metabolism. Excerpta Medica, Amsterdam, pp 222–229

    Google Scholar 

  • Stumpf WE, Sar M, Reid FA, Huang S, Narbaitz R, DeLuca HF (1981b) Autoradiographic studies with 3H 1,25(OH)2 vitamin D3 and 3H 25(OH) vitamin D3 in rat parathyroid glands. Cell Tissue Res 221:333–338

    Google Scholar 

  • Stumpf WE, Sar M, Zuber TJ, Soini E, Tuohimaa P (1981c) Quantitative assessment of steroid hormone binding sites by thawmount autoradiography. J Histochem Cytochem 29(1A):201–206

    Google Scholar 

  • Stumpf WE, Sar M, Clark SA, DeLuca HF (1982) Brain target sites for 1,25-dihydroxyvitamin D3. Science 215:1404–1405

    Google Scholar 

  • Stumpf WE, Gasc JM, Baulieu EE (1983a) Progestin receptors in pituitary and brain: combined autoradiography-immunohis-tochemistry with tritium-labeled ligand and receptor antibodies. Mikroskopie 40:359–363

    Google Scholar 

  • Stumpf WE, Sar M, Narbaitz R, Huang S, DeLuca HF (1983b) Autoradiographic localization of 1,25-dihydroxyvitamin D3 in rat rat placenta and yolk sac. Horm Res 18:215–220

    Google Scholar 

  • Stumpf WE, Clark SA, Sar M, DeLuca HF (1984) Topographical and developmental studies on 1,25(OH)2 vitamin D3 target sites in skin. Cell Tissue Res 238:489–496

    Google Scholar 

  • Stumpf WE, Clark SA, Kim YS, DeLuca HF (1985) Comparison of cellular and subcellular distribution of vitamin D metabolites [1,25(OH)2 vitamin D3, 24,25(OH)2 vitamin D3, 25(OH) vitamin D3] in target tissues. In: Norman AW, Schaefer K, Grigoleit HG, Herrath vD (eds) Vitamin D: a biochemical and clinical update. Walter de Gruyter, Berlin, pp 119–120

    Google Scholar 

  • Stumpf WE, Sar M, O'Brien LP (1987a) Vitamin D sites of action in the pituitary studied by combined autoradiography-immunohistochemistry. Histochemistry 88:11–16

    Google Scholar 

  • Stumpf WE, Sar M, Chen K, Morin J, DeLuca HF (1987b) Sertoli cells in the testis and epithelium of the ductuli efferentes are targets for 3H 1,25(OH)2 vitamin D3: an autoradiographic study. Cell Tissue Res 247:453–455

    Google Scholar 

  • Stumpf WE, O'Brien LP, Clark SA, Reid FA (1988a) 1,25(OH)2 Vitamin D3 sites of action in spinal cord and sensory ganglion. Anat Embryol 177:307–310

    Google Scholar 

  • Stumpf WE, Sar M, O'Brien LP, Morin J (1988b) Pyloric gastrinproducing cells and pyloric sphincter muscle cells are nuclear targets for 3H 1,25(OH)2 vitamin D3. Studied by autoradiography and immunohistochemistry. Histochemistry (in press)

  • Tanaka Y, Castillo L, DeLuca HF (1976) Control of renal vitamin D hydroxylase in birds by sex hormones. Proc Natl Acad Sci USA 73:2701–2705

    Google Scholar 

  • Tomita Y, Fukushima M, Tagami H (1986) Stimulation of melanogenesis by cholecalciferol in cultured human melanocytes: a possible mechanism underlying pigmentation after ultraviolet irradiation. Tohoku J Exp Med 149:451–452

    Google Scholar 

  • Törnquist K, Lamberg-Allardt C (1985) Effects of 1,25(OH)2D3, Verapamil and EDTA-infusion on the thyroliberin-induced thyrotropin release. In: Norman AW, Schaefer K, Grigoleit HG, Herrath vD (eds) Vitamin D. A chemical, biochemical and clinical update. Walter de Gruyter, Berlin, pp 363–364

    Google Scholar 

  • Walters MR (1981) An estrogen-stimulated 1,25-dihydroxyvitamin D3 receptor in rat uterus. Biochem Biophys Res Commun 103:721–726

    Google Scholar 

  • Walters MR, Cuneo DL, Jamison AP (1983) Possible significance of new target tissues for 1,25-dihydroxyvitamin D3. J Steroid Biochem 19:913–920

    Google Scholar 

  • Walters MR, Wicker DC, Riggle PC (1986) 1,25-Dihydroxyvitamin D3 receptors identified in the rat heart. J Mol Cell Cardiol 18:67–72

    Google Scholar 

  • Weber JC, Pons V, Kodicek E (1971) The localization of 1,25-dihydroxycholecalciferol in bone cell nucleic of rachitic chicks. Biochem J 125:147–153

    Google Scholar 

  • Wecksler WR, Henry HL, Norman AW (1977) Studies on the mode of action of calciferol. Subcellular localization of 1,25-dihydroxyvitamin D3 in chicken parathyroid glands. Arch Biochem Biophys 183:168–175

    Google Scholar 

  • Wehr TA, Jacobsen FM, Sack DA, Arendt J, Tamarkin L, Rosenthal NE (1986) Phototherapy of seasonal affective disorder. Arch Gen Psychiatry 43:870–875

    Google Scholar 

  • Wills L, Sanderson P, Paterson D (1926) Calcium absorption in relation to gastric acidity (A study of rickets). Arch Dis Child 1:245–254

    Google Scholar 

  • Yetgin S, Ozsoylu S (1982) Myeloid metaplasia in vitamin D deficiency rickets. Scand J Haematol 28:180–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpf, W.E. Vitamin D — Soltriol The heliogenic steroid hormone: Somatotrophic activator and modulator. Histochemistry 89, 209–219 (1988). https://doi.org/10.1007/BF00493142

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00493142

Keywords

Navigation