Skip to main content
Log in

Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate starvation

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Sulphate uptake by Anacystic nidulans under aerobic conditions in the light was found to be sensitive to metabolic poisons, such as N, N′-dicyclohexyl-carbodiimide and carbonyl cyanide m-chlorophenyl hydrazone. It was also depressed by darkness. The sulphate absorption is an energy-dependent process. Sulphate uptake was also inhibited by chromate and selenate.

Osmotic shock strongly affected sulphate uptake. This effect could be interpreted by a loss of a binding protein involved in the absorption of sulphate. Osmotic shock also depressed oxygen production in light and oxygen consumption in darkness; however, shocked cells were able to grow normally.

Sulphate uptake was strongly enhanced by sulphate starvation, but this enhancement was partly prevented by chloramphenicol. Apparently sulphate starvation depressed the synthesis of a carrier involved in the transport of sulphate. During sulphate starvation the membrane potential, measured by the uptake of triphenylmethylphosphonium, increases. This may be due to changes in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenosine 5′-triphosphate

CCCP:

carbonyl cyanide m-chlorophenyl hydrazone

DCCD:

N,N′-dicyclohexylcarbodiimide

DCMU:

3-(3,4-dichlorophenyl)1,1-dimethylurea

EDTA:

ethylene-diamine tetraacetic acid

HEPES:

N-2-hydroxyethylpiperazine-N′-2-ethane sulfonic acid

TPMP+ :

triphenylmethylphosphonium

TRIS:

2-amino-2-hydroxylmethyl-1,3-propandiol

References

  • Bornefeld, T., Simonis, W.: Correlations between phosphate uptake, photophosphorylation and metabolism in Anacystis nidulans as affected by carbonylcyanide m-chlorophenyl hydrazone and chloramphenicol. In: Proc. Intern. Congr. Photosynthesis (M. Avron, ed.), pp. 1557–1565. Amsterdam: Elsevier 1974

    Google Scholar 

  • Deane, E. M., O'Brien, R. W.: Sulphate uptake and metabolism in the Chrysomonad Monochrysis lutheri. Arch. Microbiol. 105, 295–301 (1975)

    Google Scholar 

  • Dewar, M. A., Barber, J.: Cation regulation in Anacystis nidulans. Planta (Berl.) 113, 143–155 (1973)

    Google Scholar 

  • Dewar, M. A., Barber, J.: Chloride uptake in Anacystis nidulans. Planta (Berl.) 117, 163–172 (1974)

    Google Scholar 

  • Dreyfuss, J.: Characterization of a sulfate and thiosulfate transporting system in Salmonella typhimurium. J. biol. Chem. 239, 2292–2297 (1964)

    Google Scholar 

  • Grodzinski, B., Colman, B.:The effect of osmotic stress on the oxydation of glycolate by the blue-green alga Anacystis nidulans. Planta (Berl.) 124, 123–133 (1975)

    Google Scholar 

  • Harold, F. M., Papineau, D.: Cation transport and the electrogenesis by Streptococcus faecalis. I. The membrane potential. J. Membrane Biol. 8, 27–44 (1972)

    Google Scholar 

  • Jeanjean, R.: The relationship between the rate of phosphate absorption and protein synthesis during phosphate starvation in Chlorella pyrenoidosa. FEBS Letters 32, 149–151 (1973)

    Google Scholar 

  • Jeanjean, R.: Phosphate uptake in Chlorella pyrenoidosa. II. Effect of pH and of SH reagents Biochimie 57, 1229–1236 (1975)

    Google Scholar 

  • Lowendorf, H. S., Bazinet, G. F., Slayman, C. W.: Phosphate transport in Neurospora. Derepression of a high affinity transport system during phosphorus starvation. Biochim. biophys. Acta (Amst.) 389, 541–549 (1975)

    Google Scholar 

  • Marzluf, G. A.: Genetic and metabolic controls for sulfate metabolism in Neurospora crassa. Isolation and study of chromate resistant and sulfate transport negative mutants. J. Bact. 102, 716–721 (1970).

    Google Scholar 

  • McCready R.G.L., Din, G.A.: Active sulfate transport in Saccharomyces cerivisiae. FEBS Letters 38, 361–363 (1974)

    Google Scholar 

  • Medvezcki, N., Rosenberg, H.: The phosphate binding protein of Escherichia coli. Biochim. biophys. Acta (Amst.) 211, 158–168 (1970)

    Google Scholar 

  • Neu, H. C. Heppel, L. A.: The release of enzyme from Escherichia coli by osmotic shock and during formation of spheroplasts. J. biol. Chem. 240, 3685–3692 (1965)

    Google Scholar 

  • Pardee, A. B.: Crystallization of a sulfate binding protein (permease) from Salmonella typhimurium. Science 156, 1627–1628 (1967)

    Google Scholar 

  • Pardee, A. B., Prestidge, L. S., Whipple, M. B., Dreyfuss, J.: A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium. J. biol. Chem. 241, 3962–3969 (1966)

    Google Scholar 

  • Passera, C., Ferrari, G.: Sulphate uptake in two mutants of Chlorella vulgaris with high and low sulphur amino-acid content. Physiol. Plant. 35, 318–321 (1975)

    Google Scholar 

  • Peschek, G. A.: Die bioenergetischen Prozesse der Blaualge Anacystis nidulans. Dissertation, Universität Wien (1975)

  • Robinson, J. B.: Sulphate influx in Characean cells. I. General Characteristics. J. exp. Bot. 20, 201–220 (1969)

    Google Scholar 

  • Simonis, W., Bornefeld, T., Lee-Kadem, J., Madjumdar, K.: Phosphate uptake and phosphorylation in the blue-green alga Ana cystis nidulans. In: Membrane transport in plants (U. Zimmerman, J. Dainty, eds.), pp. 220–225. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  • Smith, I. K.: Sulfate transport in cultured tabacco cells. Plant Physiol. 55, 303–307 (1975)

    Google Scholar 

  • Vallée, M., Jeanjean, R.: Le système de transport de SO 2−4 chez Chlorella pyrenoidosa et sa regulation. I. Etude cinétique de la perméation. Biochim. biophys. Acta (Amst.) 150, 599–606 (1968)

    Google Scholar 

  • Yamamoto, L. A., Segel, I. H.: The inorganic sulfate transport system of Penicillium chrysogenum. Arch. Biochem. Biophys. 114, 523–538 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeanjean, R., Broda, E. Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate starvation. Arch. Microbiol. 114, 19–23 (1977). https://doi.org/10.1007/BF00429625

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429625

Key words

Navigation