Skip to main content
Log in

Transmembrane electrical potentials in growing maize roots

Anti-auxin effects

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The anti-auxin 4-chlorophenoxyisobutyric acid (PCIB) applied at a concentration of 10-2 mol m-3 to maize root segments was found to induce a transmembrane electrical potential of up to-130 mV (Δpd of 30 mV). The kinetics of this response were comparable to the time scale for PCIB-stimulated H+-extrusion. Both effects are eliminated by the addition of p-fluoromethoxycarbonyl cyanide phenylhydrazone (FCCP). Treatment with fusicoccin (FC) and PCIB together does not result in a hyperpolarization greater than with FC alone. Benzoic acid (10-2 mol m-3) had no effect on the transmembrane electrical potentials. These results are discussed in relation to a possible electrogenic proton pump which may be regulated by perturbations in the cellular auxin content or activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATPase:

adenosine triphosphatase

FC:

fusicoccin

FCCP:

p-fluoromethoxy carbonylcyanide phenylhydrazone

IAA:

indole-3yl-acetic acid

NAA:

naphthyl-lylacetic acid

PCIB:

4-chlorophenoxyisobutyric acid

PD:

potential difference

References

  • Andreae, W.E. (1967) Uptake and metabolism of indolacetic acid, naphthalenacetic acid and 2,4 dichlorophenoxyacetic acid by pea root segments, in relation to growth inhibition during and after auxin application. Can. J. Bot. 45, 737–743

    Google Scholar 

  • Batra, M.W., Edwards, K.L., Scott, T.K. (1975) Auxin transport in roots: its characteristics and relation to growth. In: The development and function of roots, pp. 229–325, Torrey, J.G., Clarkson, D.T., eds. Academic Press, London New York San Francisco

    Google Scholar 

  • Burström, H. (1950) Studies on growth and metabolism in roots. IV. Positive and negative auxin effects on cell elongation. Physiol. Plant. 3, 277–292

    Google Scholar 

  • Cleland, R.E. (1973) Auxin induced hydrogen ion excretion from Avena coleoptiles. Proc. Natl. Acad. Sci. USA. 70, 3092–3093

    Google Scholar 

  • Cleland, R.E. (1976) Kinetics of hormone-induced H+-excretion. Plant Physiol. 58, 210–213

    Google Scholar 

  • Cleland, R.E., Lomax, T. (1977) Hormonal control of H+-excretion from oat cells. In: The regulation of cell membrane activities in plants, pp. 161–171, Marrè, E., Ciferri, O., eds. Elsevier, Amsterdam

    Google Scholar 

  • Cheland, R.E., Prins, H.B.A., Harper, J.R. Higinbotham, N. (1977) Rapid hormone-induced hyperpolarisation of the oat coleoptile transmembrane potential. Plant Physiol. 59, 395–397

    Google Scholar 

  • Cross, J.W., Briggs, W.R., Dohrmann, U.C., Ray, P.M. (1978) Auxin receptors of maize coleoptile membranes do not have ATPase activity. Plant Physiol. 61, 581–584

    Google Scholar 

  • Dupont, F., Bennett, A.B., Spanswick, R. (1982) Proton transport in microsomal vesicles from corn roots. In: Plasmalemma and tonoplast: their functions in the plant cells. pp. 409–416, Marmé, D., Marrè, E., Hertel, R., eds. Elsevier, Amsterdam

    Google Scholar 

  • Edwards, K., Scott, T.K. (1974) Rapid growth responses of corn root segments: effect of pH on elongation. Planta 119, 27–37

    Google Scholar 

  • Edwards, K., Scott, T.K. (1976) Rapid growth responses of corn root segments: effect of citrate-phosphate buffer on elongation. Planta 129, 229–233

    Google Scholar 

  • Elliott, M.C. (1977) Auxins and the regulation of root growth. In: Plant growth regulation, pp. 100–108, Pilet, P.E., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Evans, M.L., Mulkey, T.J., Vesper, M.J. (1980) Auxin action on proton influx in corn roots and its correlation with growth. Planta 148, 510–512

    Google Scholar 

  • Felle, H., Bentrup, F.W. (1977) A study of the primary effect of the uncoupler carbonyl cyanide m-chlorophenylhydrozone on membrane potential and conductance in Riccia fluitans. Biochim. Biophys. Acta 464, 179–187

    Google Scholar 

  • Gabella, M., Pilet, P.E. (1978) Effects of pH on georeaction and elongation of maize root segments. Physiol. Plant. 44, 157–160

    Google Scholar 

  • Gabella, M., Pilet, P.E. (1979) Effects of fusicoccin on maize root elongation and pH of the medium. Z. Pflanzenphysiol. 93, 23–30

    Google Scholar 

  • Hager, A., Menzel, H., Krauss, A. (1971) Versuch und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta 100, 47–75

    Google Scholar 

  • Hansen, B.A.M. (1954) The physiological classification of shoot auxins and “root auxins’. Bot. Not. 3, 230–268

    Google Scholar 

  • Hanson, J.B., Trewavas, A.J. (1982) Regulation of plant cell gowth: the changing perspective. New Phytol. 90, 1–18

    Google Scholar 

  • Hopfer, U., Leninger, A.C., Thompson, T.E. (1968) Protonic conductance across phospho-lipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 59, 484–490

    Google Scholar 

  • Lado, P., De Michelis, M.I., Cerana, R., Marrè, E. (1976) Fusicoccin induced, K+ stimulated proton secretion and acid-induced growth of apical root segments. Plant Sci. Lett. 6, 5–20

    Google Scholar 

  • Lin, W., Hanson, J.B. (1974) Increase in electrogenic membrane potential with washing of corn root tissue. Plant Physiol. 54, 799–801

    Google Scholar 

  • MacBride, R., Evans, M.L. (1977) Auxin inhibition of acid and fusicoccin-induced elongation in lentil roots. Planta 136, 97–102

    Google Scholar 

  • Marrè, E., Lado, P., Rasi-Caldogno, F., Colombo, R. (1973) Correlation between cell enlargement in pea internode segments and decrease in the pH of the medium of incubation. I. Effects of fusicoccin, natural and synthetic auxins and mannitol. Plant Sci. Lett. 1, 179–184

    Google Scholar 

  • Marrè, E., Lado, P., Ferroni, A., Ballarin-Denti, A. (1974) Transmembrane increases induced by auxin benzyladenine and fusicoccin: correlation with proton extrusion and cell enlargement. Plant Sci. Lett. 2, 257–265

    Google Scholar 

  • Marrè, E., Lado, P., Rasi-Caldogno, F., Columbo, R., Coccucci, M., DeMichaelis, M.-I. (1975) Regulation of proton extrusion by plant hormones and cell elongation. Physiol. Vég. 13, 797–811

    Google Scholar 

  • Moloney, M.M., Pilet, P.E. (1981) Auxin binding in roots: a comparison between maize roots and coleoptiles. Planta 153, 447–452

    Google Scholar 

  • Moloney, M.M., Elliott, M.C., Cleland, R.E. (1981) Acid growth effects in maize roots: evidence for a link between auxin economy and proton extrusion in the control of root growth. Planta 152, 285–291

    Google Scholar 

  • Pilet, P.E. (1961) L'action des auxines sur la croissance des cellules. In: Handbuch der Pflanzenphysiologie, vol. 14, pp. 784–806, Ruhland, W., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pilet, P.E. (1977) Growth inhibitors in growing and geostimulated maize roots. In: Plant growth regulation, pp. 115–128, Pilet, P.E., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pilet, P.E., Elliott, M.C., Moloney, M.M. (1979) Endogenous and exogenous auxins in the control of root growth. Planta 146, 405–408

    Google Scholar 

  • Pilet, P.E., Senn, A. (1980) Root growth gradients: a critical analysis. Z. Pflanzenphysiol. 99, 121–130

    Google Scholar 

  • Rasi-Caldogno, F., DeMichaelis, M.-I., Pugliarello, M.C. (1981) Evidence for an electrogenic ATPase in microsomal vesicles from pea internodes. Biochim. Biophys. Acta 642, 37–45

    Google Scholar 

  • Rayle, D., Cleland, R.E. (1980) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol. 46, 250–253

    Google Scholar 

  • Rayle, D., Cleland, R.E. (1980) Evidence that auxin induced growth involves proton excretion. Plant Physiol. 66, 433–437

    Google Scholar 

  • Scott, T.K., Wilkins, M.B. (1968) Auxin transport in roots II: polar flux of IAA in Zea roots. Planta 83, 323–334

    Google Scholar 

  • Stout, R., Cleland, R.E. (1982) MgATP-generated electrochemical proton gradient in oat root membrane vesicles. In: Plasmalemma and tonoplast: their functions in the plant cell, pp. 401–407, Marmé, D., Marrè, E., Hertel, R., eds. Elsevier, Amsterdam

    Google Scholar 

  • Street, H.E., Bullen, P.M., Elliott, M.C. (1967) The natural growth regulators in roots. In: Wachstumsregulatoren bei Pflanzen, pp. 407–416, Libbert, E., ed. Fischer, Rostock

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moloney, M.M., Pilet, PE., Marrè, MT. et al. Transmembrane electrical potentials in growing maize roots. Planta 156, 407–412 (1982). https://doi.org/10.1007/BF00393311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393311

Key words

Navigation