Skip to main content
Log in

Copper removal from aerated solution containing various metal ions using an undivided rotating cylinder electrode reactor

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Potentiostatic control of a rotating cylinder electrode reactor enabled copper retrieval from a solution containing multiple metallic ions. The treated solution (pH 4 sulphuric acid) was obtained from a mine tailing. A batch process was used in laboratory experiments to simulate possible industrial treatments. Oxygen reduction was the major parasitic reaction at the cylinder cathode since the reactor was not separated, allowing the gas produced at the anode to dissolve in the electrolyte. A higher current therefore generated an increase in oxygen production and an increase in dissolved oxygen concentration. Since the oxygen reduction proceeded under diffusion control, the oxygen reduction current efficiency also increased. Reduction of ferric ions to a ferrous state and arsenic deposition were other less important side reactions decreasing current efficiency. Polarization experiments were conducted using a rotating disk electrode to study the reactions encountered at the cylinder cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

constant used in Equation 3

A :

cathode active surface (cm2)

c :

concentration (mol cm−3)

d :

diameter (cm)

D :

diffusion coefficient (cm2 s−1)

F :

Faraday constant (96 490 C mol−1)

H :

cylinder height (cm)

I :

current (A)

k :

mass transfer coefficient (cm s−1)

n :

number of electrons exchanged in the global reaction

Re :

Reynolds number (ωd2/2ν)

Sc :

Schmidt number (ν/D)

Sh :

Sherwood number (kd/D)

t :

time (s)

V :

solution volume (cm3)

ν:

kinematic viscosity (cm2 s−1)

ω:

angular speed (rad s−1)

c:

cylinder

Cu:

copper

d:

disc

Fe:

iron

l:

limiting

t:

at time t

0:

initial

References

  1. D. G. Feasby, M. Blanchette, G. Tremblay and L. L. Sirois, in ‘Second International Conference on Abatement of Acidic Drainage’, vol. 1, Canada Center for Mineral and Energy Technology, Energy, Mines and Resources Canada, Ottawa (1991) p. 1.

    Google Scholar 

  2. F. Ramade, ‘Pŕecis d'Écotoxicologie’, Masson, Paris (1992).

    Google Scholar 

  3. F. M. D'Itri, in ‘Sediments: Chemistry and Toxicity of InPlace Pollutants’, Lewis Publishers, Boston (1990) p. 163.

    Google Scholar 

  4. C. Payette, W. W. Lam, C. W. Angle and R. J. Mikula, in ‘Second International Conference on Abatement of Acidic Drainage’, vol. 2, Canada Center for Mineral and Energy Technology, Energy, Mines and Resources Canada, Ottawa (1991) p. 15.

    Google Scholar 

  5. M. Bergeron, R. Boisvert, S. Chevé, J. Cyr, D. Germain, M. Piotte, N. Massé, K. Oravec and N. Tassé, ‘Restauration et Revalorisation de Pares de Résidus Miniers’, PMC-II project, report number 1, INRS-Géoressources, Ste-Foy, Québec (1992).

    Google Scholar 

  6. PMC-11 team, ‘Restauration et Revalorisation de Pares de Résidus Miniers’, PMC-II project, report number 2, INRS-Géoressources, Ste-Foy, Québec (1993).

    Google Scholar 

  7. INRS-Georessources, ‘Restauration et Revalorisation de Pares de Résidus Miniers’, PMC-II project, final report, INRS-Géoressources, Ste-Foy, Québec (1993).

    Google Scholar 

  8. J. St-Pierre, N. Massé, E. Fréchette and M. Bergeron, ‘Zinc Removal from Dilute Solutions using a Rotating Cylinder Electrode Reactor’, J. Appl. Electrochem., submitted.

  9. ‘CRC Handbook of Chemistry and Physics’, 65th edn, CRC Press, Boca Raton, Florida (1984).

  10. P. Strickland and F. Lawson, Australas. Inst. Min. Metall. Proc. 237 (1971) 71.

    Google Scholar 

  11. G. Johansson, Talanta 12 (1965) 163.

    Google Scholar 

  12. L. E. Vaaler, J. Electrochem. Soc. 125 (1978) 204.

    Google Scholar 

  13. D. R. Gabe and F. C. Walsh, in ‘The Reinhardt Schuhmann International Symposium on Innovative Technology and Reactor Design in Extractive Metallurgy’ (edited by D. R. Gaskell, J. P. Hager, J. E. Hoffman and P. J. Mackey), The Metallurgical Society of AIME, Warrendale, PA (1986) p. 775.

  14. F. C. Walsh and D. R. Gabe, Surf. Technol. 12 (1981) 25.

    Google Scholar 

  15. T. Takahashi, M. I. Ishmail and T. Z. Fahidy, Electrochim. Acta 26 (1981) 1727.

    Google Scholar 

  16. D. R. Gabe, J. Appl. Electrochem. 4 (1974) 91.

    Google Scholar 

  17. D. R. Gabe and F. C. Walsh, ibid. 13 (1983) 3.

    Google Scholar 

  18. N. A. Gardner and F. C. Walsh, in ‘Electrochemical Cell Design’ (edited by R. E. White), Plenum Press, New York (1984) p. 225.

  19. F. C. Walsh, in ‘Electrochemistry for a Cleaner Environment’ (edited by J. D. Genders and N. L. Weinberg), Electrosynthesis Company Incorporated, East Amherst, New York (1992) p. 101.

  20. Z. A. Foroulis and H. H. Uhlig, J. Electrochem. Soc. 111 (1964) 13.

    Google Scholar 

  21. I. Cornet and R. Kappesser, Trans. Inst. Chem. Eng. 47 (1969) T194.

    Google Scholar 

  22. J. St-Pierre, N. Massé and M. Bergeron, Electrochim. Acta 39 (1994) 2705.

    Google Scholar 

  23. J. St-Pierre, N. Massé and M. Bergeron, ‘Dissolved Oxygen Concentration in a Divided Rotating Cylinder Electrode Reactor’, Electrochim. Acta, accepted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massé, N., St-Pierre, J. & Bergeron, M. Copper removal from aerated solution containing various metal ions using an undivided rotating cylinder electrode reactor. J Appl Electrochem 25, 340–346 (1995). https://doi.org/10.1007/BF00249652

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249652

Keywords

Navigation