Skip to main content
Log in

AM1-SM2 and PM3-SM3 parameterized SCF solvation models for free energies in aqueous solution

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Two new continuum solvation models have been presented recently, and in this paper they are explained and reviewed in detail with further examples. Solvation Model 2 (AM1-SM2) is based on the Austin Model 1 and Solvation Model 3 (PM3-SM3) on the Parameterized Model 3 semiempirical Hamiltonian. In addition to the incorporation of phosphorus parameters, both of these new models address specific deficiencies in the original Solvation Model 1 (AM1-SM1), viz., (1) more accurate account is taken of the hydrophobic effect of hydrocarbons, (2) assignment of heavy-atom surface tensions is based on the presence or absence of bonded hydrogen atoms, and (3) the treatment of specific hydration-shell water molecules is more consistent. The new models offer considerably improved performance compared to AM1-SM1 for neutral molecules and essentially equivalent performance for ions. The solute charges within the Parameterized Model 3 Hamiltonian limit the utility of PM3-SM3 for compounds containing nitrogen and possibly phosphorus. For other systems both AM1-SM2 and PM3-SM3 give realistic results, but AM1-SM2 in general outperforms PM3-SM3. Key features of the models are discussed with respect to alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cramer, C.J. and Truhlar, D.G., J. Amer. Chem. Soc., 113 (1991) 8305, 9901 (E).

    Google Scholar 

  2. Cramer, C.J. and Truhlar, D.G., J. Amer. Chem. Soc., 113 (1991) 8552, 9901 (E).

    Google Scholar 

  3. Cramer, C.J. and Truhlar, D.G., Science, 256 (1992) 213.

    Google Scholar 

  4. Cramer, C.J. and Truhlar, D.G., J. Comput. Chem., in press.

  5. Pople, J.A. and Segal, G.A., J. Chem. Phys., 43 (1965) S129.

    Google Scholar 

  6. Pople, J.A. and Beveridge, D.L., Approximate Molecular Orbital Theory, McGraw-Hill, New York, 1970.

    Google Scholar 

  7. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Amer. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  8. Dewar, M.J.S. and Zoebisch, E.G., J. Mol. Struct. (Theochem), 180 (1988) 1.

    Google Scholar 

  9. Dewar, M.J.S. and Jie, C., J. Mol. Struct. (Theochem), 187 (1989) 1.

    Google Scholar 

  10. Dewar, M.J.S. and Yuan, Y.C., Inorg. Chem., 29 (1990) 3881.

    Google Scholar 

  11. Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209; 221.

    Google Scholar 

  12. Stewart, J.J.P., J. Comput.-Aided Mol. Des., 4 (1990) 1.

    Google Scholar 

  13. Born, M., Physik, Z., 1 (1920) 45.

    Google Scholar 

  14. Rashin, A.A. and Honig, B., J. Phys. Chem., 89 (1985) 5588.

    Google Scholar 

  15. Hoijtink, G.J., de Boer, E., van der Meij, P.H. and Weijland, W.P., Recl. Trav. Chim. Pays-Bas, 75 (1956) 487.

    Google Scholar 

  16. Peradejordi, F., Cah. Phys., 17 (1963) 393.

    Google Scholar 

  17. Jano, I., Compt. Rend. Acad. Sci. (Paris), 261 (1965) 103.

    Google Scholar 

  18. Fischer-Hjalmars, I., Hendriksson-Enflo, A. and Hermann, C., Chem. Phys., 24 (1977) 167.

    Google Scholar 

  19. Tapia, O., In Daudel, R., Pullman, A., Salem, L. and Veillard, A. (Eds.) Quantum Theory of Chemical Reactions, Vol. II, Reidel, Dordrecht, 1980, p. 25.

    Google Scholar 

  20. Costanciel, R. and Contreras, R., Theor. Chim. Acta, 65 (1984) 1.

    Google Scholar 

  21. Kozaki, T., Morihasi, M. and Kikuchi, O., J. Amer. Chem. Soc., 111 (1989) 1547.

    Google Scholar 

  22. Tucker, S.C. and Truhlar, D.G., Chem. Phys. Lett., 157 (1989) 164.

    Google Scholar 

  23. Still, W.C., Tempczak, A., Hawley, R.C. and Hendrickson, T., J. Amer. Chem. Soc., 112 (1990) 6127.

    Google Scholar 

  24. Onsager, L., J. Amer. Chem. Soc., 58 (1936) 1486.

    Google Scholar 

  25. See, e.g., Rivail, J.L., In Bertrán, J. and Csizmadia, I.G. (Eds.) New Theoretical Concepts for Understanding Organic Reactions, Kluwer, Dordrecht, 1989, p. 219; Rinaldi, D., Ruiz-Lopez, M.F. and Rivail, J.L., J. Chem. Phys., 78 (1983) 834; Rivail, J.L., Terryn, B., Rinaldi, D. and Ruiz-Lopez, M.F., J. Mol. Struct. (Theochem), 120 (1985) 387.

    Google Scholar 

  26. Mulliken, R.S., J. Chem. Phys., 23 (1955) 1833.

    Google Scholar 

  27. Newton, M.D., J. Phys. Chem., 79 (1975) 2795.

    Google Scholar 

  28. Tapia, O. and Goscinski, O., Mol. Phys., 29 (1975) 1653.

    Google Scholar 

  29. McCreery, J., Christofferson, R.E. and Hall, G.C., J. Amer. Chem. Soc., 98 (1976) 7191.

    Google Scholar 

  30. Rivail, J.-L. and Rinaldi, D., Chem. Phys., 18 (1976) 233.

    Google Scholar 

  31. Warshel, A. and Levitt, M., J. Mol. Biol., 103 (1976) 227.

    Google Scholar 

  32. Klopman, G. and Andreozzi, P., Theor. Chim. Acta, 55 (1980) 77.

    Google Scholar 

  33. Miertius, S., Scrocco, E. and Tomasi, J., J. Chem. Phys., 55 (1981) 117.

    Google Scholar 

  34. Bonaccorsi, R., Cimaraglia, R. and Tomasi, J., J. Comput. Chem., 4 (1983) 567.

    Google Scholar 

  35. Contreras, R. and Gomez-Jeria, J.S., J. Phys. Chem., 88 (1984) 1905.

    Google Scholar 

  36. Mikkelson, K.V., Dalgaard, E. and Swanstrøm, P., J. Phys. Chem., 91 (1987) 3081.

    Google Scholar 

  37. Bash, P.A., Field, M.J. and Karplus, M., J. Amer. Chem. Soc., 109 (1987) 8092.

    Google Scholar 

  38. Karlstrøm, G., J. Phys. Chem., 92 (1988) 1315; 93 (1989) 4952.

    Google Scholar 

  39. Hoshi, H., Sakurai, M., Inouye, Y. and Chûjô, R., J. Mol. Struct. (Theochem), 180 (1988) 267.

    Google Scholar 

  40. Bertrán, J., In Bertràn, J. and Czismadia, I.G. (Eds.) New Theoretical Concepts for Understanding Organic Reactions, Kluwer, Dordrecht, 1989, p. 231.

    Google Scholar 

  41. Stienke, T., Hänsele, E. and Clark, T., J. Amer. Chem. Soc., 111 (1989) 9107.

    Google Scholar 

  42. Duijnen van, P.T. and Rullmann, J.A.C., Int. J. Quantum Chem., 38 (1990) 181.

    Google Scholar 

  43. Karelson, M.M., Katritzky, A.R., Szafran, M. and Zerner, M.C., J. Org. Chem., 54 (1989) 6030.

    Google Scholar 

  44. Wong, M.W., Wiberg, K.B. and Frisch, M., J. Chem. Phys., 95 (1991) 8991.

    Google Scholar 

  45. Wong, M.W., Wiberg, K.B. and Frisch, M.J., J. Amer. Chem. Soc., 114 (1992) 523.

    Google Scholar 

  46. Hermann, R.B., J. Phys. Chem., 76 (1972) 2754.

    Google Scholar 

  47. Harris, M.J., Higuchi, T. and Rytting, J.H., J. Phys. Chem., 77 (1973) 2694.

    Google Scholar 

  48. Reynolds, J.A., Gilbert, D.B. and Tanford, C., Proc. Natl. Acad. Sci. U.S.A., 71 (1974) 2925.

    Google Scholar 

  49. Chothia, C., Nature, 248 (1974) 338.

    Google Scholar 

  50. Amidon, G.L., Yalkowski, S.H., Anik, S.T. and Valvani, S.C., J. Phys. Chem., 79 (1975) 2239.

    Google Scholar 

  51. Warshel, A., J. Phys. Chem., 83 (1979) 1640.

    Google Scholar 

  52. Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H. and Zehfus, M.H., Science, 229 (1985) 834.

    Google Scholar 

  53. Eisenberg, D. and McLachlan, A.D., Nature, 319 (1986) 199.

    Google Scholar 

  54. Ooi, T., Oobatake, M., Nemethy, G. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 84 (1987) 3086.

    Google Scholar 

  55. Lee, C.Y., McCammon, J.A. and Rossky, P.J., J. Chem. Phys., 80 (1984) 4448.

    Google Scholar 

  56. Friedman, H.L. and Krishnan, C.V., J. Solution Chem., 2 (1973) 119.

    Google Scholar 

  57. Hine, J. and Mookerjee, P.K., J. Org. Chem., 40 (1975) 287.

    Google Scholar 

  58. Cabani, S., Gianni, P., Mollica, V. and Lepori, L., J. Solution Chem., 10 (1981) 563.

    Google Scholar 

  59. Ben-Naim, A. and Marcus, Y., J. Chem. Phys., 81 (1984) 2016.

    Google Scholar 

  60. Pearson, R.G., J. Amer. Chem. Soc., 108 (1986) 6109.

    Google Scholar 

  61. Armstrong, D.R., Perkins, P.G. and Stewart, J.J.P., J. Chem. Soc., Dalton Trans., 1973 (1973) 838.

    Google Scholar 

  62. Jorgensen, W.L., Gao, J. and Ravimohan, C., J. Phys. Chem., 89 (1985) 3470.

    Google Scholar 

  63. Dewar, M.J.S., Healy, E.F., Holder, A.J. and Yan, Y.-C., J. Comp. Chem., 11 (1990) 541.

    Google Scholar 

  64. Seeger, D.M., Korzeniewski, C. and Kowalchyk, W., J. Phys. Chem., 95 (1991) 6871.

    Google Scholar 

  65. Juranic, I., Rzepa, H.S. and Yi, M., J. Chem. Soc., Perkin Trans., 2 (1990) 877.

    Google Scholar 

  66. Rzepa, H.S. and Yi, M., J. Chem. Soc., Perkin Trans., 2 (1991) 531.

    Google Scholar 

  67. Rzepa, H.S. and Yi, M., J. Chem. Soc., Perkin Trans., 2 (1990) 943.

    Google Scholar 

  68. Gulera, G., Lluch, J.M., Oliva, A. and Bertrán, J., J. Mol. Struct. (Theochem), 163 (1988) 101.

    Google Scholar 

  69. Dannenberg, J.J., J. Phys. Chem., 92 (1988) 6869.

    Google Scholar 

  70. Khalil, M., Woods, R.J., Weaver, D.F. and Smith, V.H. Jr., J. Comput. Chem., 12 (1991) 584.

    Google Scholar 

  71. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. and Nuttall, R.C., J. Phys. Chem. Ref. Data, 11 (1982) Suppl. 2.

  72. Wolfenden, R. and Williams, R., J. Amer. Chem. Soc., 105 (1983) 1028.

    Google Scholar 

  73. Pauling, I., The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, 1960.

    Google Scholar 

  74. Cramer, C.J. and Truhlar, D.G., AMSOL-version 1.0 (program no. 606 of the Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN), QCPE Bull., 11 (1991) 57.

    Google Scholar 

  75. Dewar Research Group and Stewart, J.J.P., AMPAC-version 1 (program no. 506 of the Quantum Chemistry Program Exchange), QCPE Bull., 6 (1986) 24a.

  76. Liotard, D.A., Healy, E.F., Ruiz, J.M. and Dewar, M.J.S., AMPAC-version 2.1 (program no. 506 of the Quantum Chemistry Program Exchange), QCPE Bull., 9 (1989) 123.

    Google Scholar 

  77. Cramer, C.J., Lynch, G.C. and Truhlar, D.G., AMSOL-version 3.0.1 and 3.0.1c. The new versions are also available from Quantum Chemistry Program Exchange, as version 3.0.1 of program no. 606.

  78. Pratt, L.R. Chandler, D., J. Chem. Phys., 67 (1977) 3683.

    Google Scholar 

  79. Wilson, C., Mace, J.E. and Agard, D.A., J. Mol. Biol., 220 (1991) 495.

    Google Scholar 

  80. George, P., Witonsky, R.J., Trachtman, M., Wu, C., Dorwart, W., Richman, L., Richman, W., Shurayh, F. and Lentz, B., Biochim. Biophys. Acta, 223 (1970) 1.

    Google Scholar 

  81. Weast, R.C., (Ed.) Handbook of Chemistry and Physics, 67th ed., CRC Press, Boca Raton, 1986, p. D-163.

    Google Scholar 

  82. Lim, C., Bashford, D. and Karplus, M., J. Phys. Chem., 95 (1991) 5610.

    Google Scholar 

  83. Wolfenden, R., J. Amer. Chem. Soc., 98 (1976) 1987.

    Google Scholar 

  84. Wolfenden, R., Biochem., 17 (1978) 201.

    Google Scholar 

  85. Radzicka, A., Pederson, L. and Wolfenden, R., Biochem., 27 (1988) 4538.

    Google Scholar 

  86. Jorgensen, W.L. and Gao, J., J. Amer. Chem. Soc., 110 (1988) 4212.

    Google Scholar 

  87. Yu, H.-A., Pettit, B.M. and Karplus, M., J. Amer. Chem. Soc. 113 (1991) 2425.

    Google Scholar 

  88. Jorgensen, W.L., J. Phys. Chem., 87 (1983) 5304.

    Google Scholar 

  89. Rosenberg, R.O., Mikkeleni, R. and Berne, B.J., J. Amer. Chem. Soc., 104 (1982) 7647.

    Google Scholar 

  90. Jorgensen, W.L., J. Chem. Phys., 77 (1982) 5757.

    Google Scholar 

  91. Curtiss, L.A., Frurip, D.J. and Blander, M., J. Chem. Phys., 71 (1979) 2703.

    Google Scholar 

  92. Szalewicz, K., Cole, S.J., Kolos, W. and Bartlett, R.J., J. Chem. Phys., 89 (1988) 3662.

    Google Scholar 

  93. Bondi, A., J. Phys. Chem., 68 (1964) 441.

    Google Scholar 

  94. Freed, K.F., In Segal, G.A. (Ed.) Semiempirical Methods of Electronic Structure Calculation, Part A: Techniques, Plenum, New York, 1977, p. 201.

    Google Scholar 

  95. Mori, H., Progr. Theor. Phys., 33 (1965) 423.

    Google Scholar 

  96. Grabert, H., Projection Operator Techniques in Nonequlibrium Statistical Mechanics, Springer-Verlag, Berlin, 1982.

    Google Scholar 

  97. Gonzalez-Lafont, A., Truong, T.N. and Truhlar, D.G., J. Phys. Chem., 95 (1991) 4618.

    Google Scholar 

  98. Viggiano, A.A., Paschkewitz, J., Morris, R.A., Paulson, J.F., Gonzalez-Lafont, A. and Truhlar, D.G., J. Amer. Chem. Soc., 113 (1991) 9404.

    Google Scholar 

  99. Besler, B.H., Merz, K.M., Jr. and Kollman, P.A., J. Comput. Chem., 11 (1990) 431.

    Google Scholar 

  100. Dewar, M.J.S. and Thiel, W., J. Amer. Chem. Soc., 99 (1977) 4899; 4907.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cramer, C.J., Truhlar, D.G. AM1-SM2 and PM3-SM3 parameterized SCF solvation models for free energies in aqueous solution. J Computer-Aided Mol Des 6, 629–666 (1992). https://doi.org/10.1007/BF00126219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126219

Key words

Navigation