Skip to main content
Log in

Linear Free-Energy Relationships (LFER) and Solvation Thermodynamics: The Case of Water and Aqueous Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Abraham solvation parameter model, known alternatively as the Linear Solvation-Energy Relationships (LSER) model, is critically examined for its capacity to predict the hydration free-energy for a variety of solutes. The very linearity of the LSER approach is reconsidered as regards the hydrogen-bonding contribution to solvation free energy. This is done by combining the equation-of-state solvation thermodynamics with the statistical thermodynamics of hydrogen bonding. Thus, this hydrogen-bonding contribution is placed on a firm thermodynamic basis and the predictive calculations are now possible with known acidity and basicity, A and B, molecular descriptors. The LFER coefficients are now expressed in terms of the A and B descriptors. The methodology for the derivation of the new linear equations for the hydrogen-bonding contribution to solvation free energy is presented along with examples of calculations. The implication for the exchange of information on intermolecular interactions between diverse Quantitative Structure–Property Relationships (QSPR) and other approaches is discussed. The proposed changes and descriptor adjustments augments the LSER capacity for solvent screening and use in numerous applications in the broader chemical, biochemical and environmental sector. A critical discussion of perspectives and the challenging issues is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wilhelm, E.: In memoriam: Jean-Pierre E. Grolier (1936–2022). J. Solution Chem. 51, 467–478 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abraham, M.H., McGowan, J.C.: The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 23, 243–246 (1987)

    Article  CAS  Google Scholar 

  3. Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22, 73–83 (1993)

    Article  CAS  Google Scholar 

  4. Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 1037, 29–47 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Poole, C.F., Atapattu, S.N., Poole, S.K., Bell, A.H.: Determination of solute descriptors by chromatographic methods. Anal. Chim. Acta 652, 32–53 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. Abraham, M.H., Smith, R.E., Luchtefeld, R., Boorem, A.J., Luo, R., Acree, W.E., Jr.: Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99, 1500–1515 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. Abraham, M.H., Whiting, G.S., Carr, P.W., Ouyang, H.: Hydrogen bonding Part 45. The solubility of gases and vapours in methanol at 298 K: an LFER analysis. J. Chem. Soc. Perkin Trans. 2, 1385–1390 (1998)

    Article  Google Scholar 

  8. Abraham, M.H., Whiting, G.S., Shuely, W.J., Doherty, R.M.: The solubility of gases and vapours in ethanol – the connection between gaseous solubility and water–solvent partition. Can. J. Chem. 76, 703–709 (1998)

    Article  CAS  Google Scholar 

  9. Abraham, M.H., Platts, J.A., Hersey, A., Leo, A.J., Taft, R.W.: Correlation and estimation of gas–chloroform and water–chloroform partition coefficients by a linear free energy relationship method. J. Pharm. Sci. 88, 670–679 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Abraham, M.H., Le, J., Acree, W.E., Jr., Carr, P.W.: Solubility of gases and vapours in propan-1-ol at 298 K. J. Phys. Org. Chem. 12, 675–680 (1999)

    Article  CAS  Google Scholar 

  11. Goss, K.− U.: Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER). Fluid Phase Equilibr. 233, 19–22 (2005)

    Article  CAS  Google Scholar 

  12. Acree, W.E., Abraham, M.H.: The analysis of solvation in ionic liquids and organic solvents using the Abraham linear free energy relationship. J. Chem. Technol. Biotechnol. 81, 1441–1446 (2006)

    Article  CAS  Google Scholar 

  13. Goss, K.U.: e: Using COSMO-RS for the prediction of vapor-liquid equilibria, gas solubilities and partition coefficients in polymers. Anal. Chem. 83(13), 5304–5308 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. Sinha, S., Yang, Ch., Wu, E., Acree, W.E.: Abraham solvation parameter model: examination of possible intramolecular hydrogen-bonding using calculated solute descriptors. Liquids 2, 131–146 (2022)

    Article  CAS  Google Scholar 

  15. Ulrich, N., Endo, S., Brown, T.N., Watanabe, N., Bronner, G., Abraham, M.H., Goss, K.− U.: UFZ− LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research− UFZ. (2017) [accessed on 16.2.2023]. Available from http://www.ufz.de/lserd

  16. Eggert, T., Langowski, HCh.: Linear solvation energy relationships (LSERs) for robust prediction of partition coefficients between low density polyethylene and water part I: Experimental partition coefficients and model calibration. Eur. J. Pharm. Sci. 172, 106137 (2022)

    Article  Google Scholar 

  17. Egert, T., Langowski, H.C.: Linear solvation energy relationships (LSERs) for robust prediction of partition coefficients between low density polyethylene and water Part II: model evaluation and benchmarking. Eur. J. Pharm. Sci. 172(1), 1–10 (2022)

    Google Scholar 

  18. Hildebrand, J., Scott, R.L.: Regular solutions. Prentice Hall, Englewood Cliffs (1962)

    Google Scholar 

  19. Barton, A.F.M.: Handbook of solubility parameters and other cohesion parameters. CRC Press, Boca Raton (1983)

    Google Scholar 

  20. Hansen, C.M.: Hansen solubility parameters A user’s handbook. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  21. Abbott, S , Yamamoto, H., Hansen, C.M.: Hansen Solubility Parameters in Practice, Complete with software, data and examples, third ed.− version 3.1.20. Book and Software published by Hansen− Solubility.com, (2010).

  22. Klamt, A.: COSMO− RS from quantum chemistry to fluid phase thermodynamics and drug design. Elsevier, Amsterdam (2005)

    Google Scholar 

  23. COSMObase Ver. 1701, COSMOlogic GmbH & Co., K.G., Leverkusen, Germany, (2017).

  24. Lin, S.T., Sandler, S.I.: A priori phase equilibrium prediction from a segment contribution solvation model. Ind. Eng. Chem. Res. 41, 899–913 (2002)

    Article  CAS  Google Scholar 

  25. Grensemann, H., Gmehling, J.: Performance of a conductor-like screening model for real solvents model in comparison to classical group contribution methods. Ind. Eng. Chem. Res. 44, 1610–1624 (2005)

    Article  CAS  Google Scholar 

  26. Pye, C.C., Ziegler, T., van Lenthe, E., Louwen, J.N.: An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package — Part II. COSMO for real solvents. Can. J. Chem. 87, 790–797 (2009)

    Article  CAS  Google Scholar 

  27. Brouwer, T., Schuur, B.: Model performances evaluated for infinite dilution activity coefficients prediction at 298.15 K. Ind. Eng. Chem. Res. 58, 8903–8914 (2019)

    Article  CAS  Google Scholar 

  28. van Noort, P.C.M.: Solvation thermodynamics and the physical-chemical meaning of the constant in Abraham solvation equations. Chemosphere 87, 125–131 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. van Noort, P.C.M.: Estimation of Abraham solvation equation coefficients for hydrogen bond formation from Abraham solvation parameters for solute acidity and basicity. Chemosphere 90, 344–348 (2013)

    Article  ADS  PubMed  Google Scholar 

  30. Panayiotou, C., Zuburtikudis, I., Abu Khalifeh, H.: Linear free-energy relationships (LFER) and solvation thermodynamics: the thermodynamic basis of LFER linearity. Ind. Eng. Chem. Res. 62(6), 2989–3000 (2023)

    Article  CAS  Google Scholar 

  31. Panayiotou, C., Zuburtikudis, I., Abu Khalifeh, H.: Linear solvation energy relationships (LSER) and equation-of-state thermodynamics: on the extraction of thermodynamic information from LSER database. Liquids 3, 66–89 (2023)

    Article  CAS  Google Scholar 

  32. Panayiotou, C., Sanchez, I.C.: Hydrogen bonding in fluids: an equation-of-state approach. J. Phys. Chem. 95, 10090–10097 (1991)

  33. Sanchez, I.C., Panayiotou, C.: Polymer solution thermodynamics. In: Sandler, S., Marcel Dekker (eds.) Models for thermodynamic and phase equilibria calculations. New York (1994)

  34. Panayiotou, C.: Hydrogen bonding in solutions: the equation-of-state approach. In: Birdi, K.S. (ed.) Handbook of colloid and interface science. CRC Press, Boca-Raton (2003)

  35. Missopolinou, D., Panayiotou, C.: Hydrogen-bonding cooperativity and competing inter- and intramolecular associations: a unified approach. J. Phys. Chem. A 102, 3574–3581 (1998)

  36. Moine, E., Privat, R., Sirjean, B., Jaubert, J.- N.: Estimation of solvation quantities from experimental thermodynamic data: development of the comprehensive compsol databank for pure and mixed solutes. J. Phys. Chem. Ref. Data 46(3), 033102 (2017)

  37. Laurence, C., Gal, J.-F.: Lewis basicity and affinity scales: data and measurements. Wiley, New York (2010)

  38. Panayiotou, C., Mastrogeorgopoulos, S., Ataman, M., Hadadi, N., Hatzimanikatis, V.: Molecular thermodynamics of metabolism: hydration quantities and the equation-of-state approach. Phys. Chem.Chem. Phys. 18, 32570–32592 (2016)

  39. Mastrogeorgopoulos, S., Hatzimanikatis, V., Panayiotou, C.: Toward a simple predictive molecular thermodynamic model for bulk phases and interfaces. Ind. Eng. Chem. Res. 56(38), 10900–10910 (2017)

    Article  CAS  Google Scholar 

  40. Mensitieri, G., Scherillo, G., Panayiotou, C., Musto, P.: Towards a predictive thermodynamic description of sorption processes in polymers: The synergy between theoretical EoS models and vibrational spectroscopy. Mater. Sci. Eng. R 140, 100525 (2020)

    Article  Google Scholar 

  41. Panayiotou, C., Hatzimanikatis, V.: The solubility parameters of CO2 and ionic liquids: Are they an enigma? Fluid Phase Equilib. 527, 112828–112836 (2021)

    Article  CAS  Google Scholar 

  42. Panayiotou, C., Tsivintzelis, I., Aslanidou, D., Hatzimanikatis, V.: Solvation quantities from a COSMO-RS equation of state. J. Chem. Thermod. 90, 294–309 (2015)

    Article  CAS  Google Scholar 

  43. Panayiotou, C., Voutsas, E., Hatzimanikatis, V.: Solvation Gibbs energy. In: Wilhelm, E., Letcher, T.M. (eds.) The equation of state approach, in Gibbs energy and Helmholtz energy: liquids, solutions and vapours. The Royal Society of Chemistry, London (2022)

    Google Scholar 

  44. T. E. Daubert, R. P. Danner (Eds.): Data Compilation Tables of Properties of Pure Compounds; AIChE Symp. Ser. No. 203, American Institute of Chemical Engineers, New York (1985).

  45. Veytsman, B.A.: Are lattice models valid for fluids with hydrogen bonds? J. Phys. Chem. 94, 8499–8500 (1990)

    Article  CAS  Google Scholar 

  46. Park, B.H., Kang, J.W., Yoo, K.P., Lee, C.S.: Extended hydrogen-bonding lattice fluid theory for dimers and n-mers. Fluid Phase Equilib. 194, 609–617 (2002)

    Article  Google Scholar 

  47. Tsivintzelis, I., Kontogeorgis, G.M., Panayiotou, C.: Dimerization of carboxylic acids: an equation of state approach. J. Phys. Chem. B 121(9), 2153–2163 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. Baldaza, A., Scherillo, G., Mensitieri, G., Panayiotou, C.: Activity coefficients at infinite dilution via a perturbation method of NRHB model. Chem. Eng. Sci. 262, 118043 (2022)

    Article  Google Scholar 

  49. Ben-Naim, A.: Solvation Thermodynamics. Plenum Press, New York (1978)

    Google Scholar 

Download references

Acknowledgements

This research is supported by ASPIRE, the technology program management pillar of Abu Dhabi’s Advanced Technology Research Council (ATRC), via the ASPIRE “AARE (ASPIRE Awards for Research Excellence)” and through grant no. AARE20-246 to Ioannis Zuburtikudis of Abu Dhabi University.

Author information

Authors and Affiliations

Authors

Contributions

CP: Concept / formalism development, Calculations, Manuscript preparation IZ: Financial support, calculations, Manuscript preparation HAK: Literature search, calculations, Manuscript preparation All authors reviewed the manuscript

Corresponding authors

Correspondence to Costas Panayiotou or Ioannis Zuburtikudis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 788 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panayiotou, C., Abu Khalifeh, H. & Zuburtikudis, I. Linear Free-Energy Relationships (LFER) and Solvation Thermodynamics: The Case of Water and Aqueous Systems. J Solution Chem 53, 228–255 (2024). https://doi.org/10.1007/s10953-023-01290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01290-3

Keywords

Navigation