Skip to main content
Log in

Influence of implantation site on formation of metastases

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Summary

It has been suggested that local factors at the site of growth of a primary tumor might influence the outcome of the metastatic process. Compilation of the data from the literature revealed that growth of tumor cells in the selective medium of the intraperitoneal cavity, of the lymph node and/or of the spleen leads to progression towards a population of cells with a higher metastatic capacity. In search for an experimental model with transplantable rodent tumors that could be used to study the influence of the anatomic site of an implant on the formation of spontaneous metastases, we have considered heterogeneity of microenvironmental conditions in the subcutaneous milieu. For the MO4 mouse fibrosarcoma, a primary tumor growing subcutaneously in the tail was highly metastatic to lymph nodes and lungs while it failed to produce metastases when growing in the pinna. Implantation of a spheroidal aggregate of MO4 tumor cells, alternatively in the tail and in the pinna of syngeneic C3H/He mice, might be an appropriate model, which is discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold W: Syngene Mäusesarkoma in Aszitesform als chemotherapeutische Testmodelle. Arch Geschwulst-forsch (46): 558–567, 1976.

    Google Scholar 

  2. Auerbach R, Auerbach W: Regional differences in the growth of normal and neoplastic cells. Science (215): 127–134, 1981.

    Google Scholar 

  3. Auerbach R, Morrissey LW, Kubai L, Sidky YA: Regional differences in tumor growth: studies of the vascular system. Int J Cancer (22): 40–46, 1978.

    Google Scholar 

  4. Auerbach R, Morrissey LW, Sidky YA: Regional differences in the incidence and growth of mouse tumors following intradermal or subcutaneous inoculation. Cancer Res (38): 1739–1744, 1978.

    Google Scholar 

  5. Auerbach R, Morrissey LW, Sidky YA: Gradients in tumour growth. Nature (274): 697–699, 1978.

    Google Scholar 

  6. Baserga R, Baum J: Induction of blood-borne metastases by tumor transplantation in the tail of mice. Cancer Res (15): 52–58, 1955.

    Google Scholar 

  7. Biswas C, Moran WP, Bloch KJ, Gross J: Collagenolytic activity of rabbit V2-carcinoma growing at multiple sites. Biochem Biophys Res Commun (80): 33–38, 1978.

    Google Scholar 

  8. Bonne C: Fréquence des métastases pulmonaires dans le cas de tumeurs greffées dans la queue de la souris. C R Soc Biol (2): 312–314, 1925.

    Google Scholar 

  9. De Ruiter J, Cramer SJ, Lelieveld P, Van Putten LM: Comparison of metastatic disease after local tumour treatment with radiotherapy or surgery in various tumour models. Eur J Cancer Clin Oncol (18): 281–289, 1982.

    Google Scholar 

  10. Diamandopoulos GTh: Differences in behavior and prognosis between leukemic and lymphomatous hamster lymphocytic neoplasm induced by Simian virus 40. Proc Natl Acad Sci (75): 2011–2015, 1978.

    Google Scholar 

  11. Diamandopoulos GTh: Microenvironmental influences on the in vivo behavior of neoplastic lymphocytes. Proc Natl Acad Sci (76): 6456–6460, 1979.

    Google Scholar 

  12. Engeset A, Tjötta E: Lymphatic pathways from the tail in rats and mice. Cancer Res (20): 613–614, 1960.

    Google Scholar 

  13. Feldman WH, Karlson AG, Herrick JF: Mycobacterium ulcerans. Pathogenesis of infection in mice including determinations of dermal temperatures. Am J Pathol (33): 1163–1179, 1957.

    Google Scholar 

  14. Fisher B, Fisher ER: Transmigration of lymph nodes by tumor cells. Science (152): 1397–1398, 1966.

    Google Scholar 

  15. Franchi G, Reyers-Degli Innocenti I, Rosso R, Garattini S: Lymph-node metastases after intratibial transplantation of tumors. Int J Cancer (3): 765–770, 1968.

    Google Scholar 

  16. Frost P, Kerbel RS, Tartamella-Biondo R: Generation of highly metastatic tumors in DBA/2 mice: oncogenicity of A strain tumor cells. Invasion Metastasis (1): 22–33, 1981.

    Google Scholar 

  17. Gorelik E, Segal S, Shapiro J, Katzav S, Ron Y, Feldman M: Interactions between the local tumor and its metastases. Cancer Metastasis Rev (1): 83–94, 1982.

    Google Scholar 

  18. Hagmar B, Ryd W: Metastasis spread from syngeneic murine tumours. Establishment of a test protocol for comparison between ascites tumours and their progenitors. Acta Pathol Microbiol Scand [A] (86): 231–239, 1978.

    Google Scholar 

  19. Hanna N, Pollack VA, Fidler IJ: The use of young nude mice to study metastasis of human neoplasms. In: Humphrey GB, Dehner LP, Grindey GB, Acton RT (eds) Pediatric oncology. Martinus Nijhoff, The Hague, 1983.

    Google Scholar 

  20. Hauschka TS, Levan A: Cytologic and functional characterization of single cell clones isolated from the Krebs-2 and Ehrlich ascites tumors. J Natl Cancer Inst (21): 77–111, 1958.

    Google Scholar 

  21. Ishibashi T, Yamada H, Harada S, Harada Y, Miyazaki N, Takamoto M, Watanabe K: Distant metastasis facilitated by BCG: spread of tumour cells injected in the BCG-primed site. Br J Cancer (41): 553–561, 1980.

    Google Scholar 

  22. Jin G. Jian Y, Baogui L, Haishu Ch, Yongqing D: Experimental investigation on lymphatic cancer metastasis in mice. Acta Acad Med Sin (3): 53–56, 1981.

    Google Scholar 

  23. Jirtle RL: Blood flow to lymphatic metastases in concious rats. Eur J Cancer (17): 33–60, 1981.

    Google Scholar 

  24. Keller R: Induction of macroscopic metastases via surgery. The site of the primary tumor inoculum is critical. Invasion Metastasis (1): 136–148, 1981.

    Google Scholar 

  25. Kerbel RS, Twiddy RR, Robertson DM: Induction of a tumor with greatly increased metastic growth potential by injection of cells from a low-metastatic H-2 heterozygous tumor cell line into an H-2 incompatible parental strain. Int J Cancer (22): 583–594, 1978.

    Google Scholar 

  26. Klein E: Gradual transformation of solid into ascites tumors. Permanent difference between the original and the transformed sublines. Cancer Res (14): 482–491, 1954.

    Google Scholar 

  27. Koch FE: Zur Frage der Metastasenbildung bei Impftumoren. Z Krebsforsch (48): 495–505, 1939.

    Google Scholar 

  28. Kyriazis AP, DiPersio L, Michael GJ, Pesce AJ, Stinnett JD: Growth patterns and metastatic behavior of human tumors growing in athymic mice. Cancer Res (38): 3186–3190, 1978.

    Google Scholar 

  29. Kyriazis AA, Kyriazis AP: Preferential sites of growth of human tumors in nude mice following subcutaneous transplantaion. Cancer Res (40): 4509–4511, 1980.

    Google Scholar 

  30. Leduc EH: Metastasis of transplantable hepatomas from the spleen to the liver in mice. Cancer Res (19): 1091–1095, 1959.

    Google Scholar 

  31. Leduc EH, Wilson JW: Production of transplantable hepatomas by intrasplenic implantation of normal liver in the mouse. J Natl Cancer Inst (30): 85–99, 1963.

    Google Scholar 

  32. Malave I, Blanca I, Fuji H: Influence of inoculation site on development of the Lewis lung carcinoma and suppressor cell activity in syngeneic mice. J Natl Cancer Inst (62): 83–88, 1979.

    Google Scholar 

  33. Mareel M, Kint J, Meyvisch C: Methods of study of the invasion of malignant C3H-mouse fibroblasts into embryonic chick heart in vitro. Virchows Arch [Cell Pathol] (30): 95–111, 1979.

    Google Scholar 

  34. Mazzucco K: The role of collagen in tissue interactions during carcinogenesis in mouse skin. In: Tarin D (ed) Tissue interactions in carcinogenesis. Academic Press, London, New York, 1972, pp 377–398.

    Google Scholar 

  35. Meyvisch C, Mareel M: Invasion of malignant C3H mouse fibroblasts from aggregates transplanted into the auricles of syngeneic mice. Virchows Arch [Cell Pathol] (30): 113–122, 1979.

    Google Scholar 

  36. Meyvisch C, Mareel M: Influence of implantation site of MO4 cell aggregates on the formation of metastases. Invasion metastasis (2): 51–60, 1982.

    Google Scholar 

  37. Meyvisch C, Storme GA, Bruyneel E, Mareel MM: Invasiveness and tumorigenicity of MO4 mouse fibrosarcoma cells pretreated with microtubule inhibitors. Clin Exp Metastasis (1): 17–28, 1983.

    Google Scholar 

  38. Meyvisch C, Van Hoorde P, Mareel M: Invasiveness and the ‘metastatic potential’ of tumor cells. In Hellman K, Hilgard P, Eccles S (eds) Metastasis clinical and experimental aspects. Martinus Nijhoff, The Hague, 1980, pp 36–38.

    Google Scholar 

  39. Pasqualini CD, Saal F, Braylan RC, Rabasa SL: Induction of leukemia in BALB mice by allogeneic AKR leukemic cells. Int J Cancer (5): 338–345, 1970.

    Google Scholar 

  40. Peters LJ, Hewitt HB: The influence of fibrin formation on the transplantability of murine tumor cells. Implications for the mechanism of the Révèsz effect. Br J Cancer (29): 279–300, 1974.

    Google Scholar 

  41. Poste G: Experimental systems for analysis of the malignant phenotype. Cancer Metastasis Rev (1): 141–199, 1982.

    Google Scholar 

  42. Prehn RT: Analysis of antigenic heterogeneity within individual 3-methylcholanthrene-induced mouse sarcomas. J Natl Cancer Inst (45): 1039–1045, 1970.

    Google Scholar 

  43. Raz A, Hanna N, Fidler IJ: In vivo isolation of a metastatic tumor cell variant involving selective and nonadaptive processes. J Natl Cancer Inst (66): 183–189, 1981.

    Google Scholar 

  44. Ringertz N, Klein E, Klein G: Histopathologic studies of peritoneal implantation and lung metastasis at different stages of the gradual transformation of the MCIM mouse sarcoma into ascites form. J Natl Cancer Inst (18): 173–191, 1957.

    Google Scholar 

  45. Stackpole CW: Distant lung-colonizing and lung-metastasizing cell populations in B16 mouse melanoma. Nature (289): 798–800, 1981.

    Google Scholar 

  46. Stoker TAM: The effect of cortisone therapy and limb excercise on the dissimination of cancer cells via the lymphatic system. Br J Cancer (23): 132–135, 1969.

    Google Scholar 

  47. Sugarbaker EV, Thornthwaite J, Ketcham AS: Inhibitory effect of a primary tumor on metastasis. In: Day SB (ed) Cancer invasion and metastasis: biologic mechanisms and therapy. Raven Press, New York, 1977, pp 227–240.

    Google Scholar 

  48. Takahashi S, Konishi Y, Nakatani K, Inui S, Kojima K, Shiratori T: Conversion of a poorly differentiated human adenocarcinoma to ascites form with invasion and metastasis in nude mice. J Natl Cancer Inst (60): 925–929, 1978.

    Google Scholar 

  49. Talmadge JE, Starky JR, Davis WC, Cohen A: Introduction of metastatic heterogeneity by short term in vivo passage of a cloned transformed cell line. J Supramol Struct (12): 227–243, 1979.

    Google Scholar 

  50. Travis EL, Reinartz G, Chu AM, Down JD, Fowler JF: Effect of cyclophosphamide or X-rays on spontaneously occuring metastases from tumors transplanted into the tails of mice. Cancer Res (41): 1803–1807, 1981.

    Google Scholar 

  51. Vaage J: Transplantation procedures in tumor immunology. Methods Cancer Res (8): 33–58, 1973.

    Google Scholar 

  52. Vaage J: Inherent changes in the in vitro characteristics of C3H/He mammary carcinomas. Cancer Res (40): 3495–3501, 1980.

    Google Scholar 

  53. Van De Velde CJH, Van Putten LM, Zwaveling A: A new metastasizing mammary carcinoma model in mice: model characteristics and applications. Eur J Cancer (13): 555–565, 1977.

    Google Scholar 

  54. Van dongen JA: Haematogene metastasen: Scheltema and Holkema, Amsterdam, 1961, p 31.

    Google Scholar 

  55. Van Putten LM, Krain LKJ, Van Dierendonck HHC, Smink T, Füzy M: Enhancement by drugs of metastatic lung module formation after intravenous tumour cell injection. Int J Cancer (15): 588–595, 1978.

    Google Scholar 

  56. Weiss L, Haydock D, Pickren JW, Lane WW: Organ vascularity and metastatic frequency. Am J Pathol (101): 101–113, 1980.

    Google Scholar 

  57. White DC, DeCosse JJ: Experimental arterial dissimination of tumor cells. Cancer (21): 9–15, 1968.

    Google Scholar 

  58. Wrzosek A: Ueber die Bedingungen der Entstehung von makroskopischen Metastasen bei carcinomatösen Maüse. Z Krebsforsch Klin Onkol (11): 507–514, 1912.

    Google Scholar 

  59. Yogeeswaran G, Stein BS, Sebastian H; Characterization of tumorigenic and metastatic properties of murine sarcoma virus-transformed nonproducer Balb/3T3 cell lines. J Natl Cancer Inst (64): 951–957, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyvisch, C. Influence of implantation site on formation of metastases. Cancer Metast Rev 2, 295–306 (1983). https://doi.org/10.1007/BF00048482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048482

Keywords

Navigation