Skip to main content

Orthotopic and Ectopic Models of Metastasis

  • Chapter
  • First Online:
Experimental and Clinical Metastasis

Abstract

The implantation of syngeneic or xenogeneic tissue into living models allows cancer researchers to follow primary tumor growth and the development of secondary metastases in an in vivo host microenvironment. Host animals are constantly releasing stimuli (autocrine, endocrine, and paracrine factors), which influences the progression and pathogenesis of the primary tumor and secondary metastatases. Animal models allow researchers to observe the complex interactions of these physiological factors with the metastatic cascade in vivo, a process that is not possible to replicate in vitro. Successful models allow for the observation and elucidation of the pathways implicated in the development of metastatic disease. These models are used to delineate the critical factors influencing the success and failure at each step in metastatic disease progression. Furthermore, these models allow for the opportunity to examine the effects of pharmacological and anti-cancer therapies on both the primary tumor and the secondary metastases in order to develop better therapies for treating human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astoul P, Colt HG, Wang X, Hoffman RM (1994) A “patient-like” nude mouse model of parietal pleural human lung adenocarcinoma. Anticancer Res 14:85–91

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay A et al (2010) Doxorubicin in combination with a small TGFβ inhibitor: A potential novel therapy for metastatic breast cancer in mouse models. PLoS ONE 5:e10365

    Article  Google Scholar 

  • Bao L, Matsumura Y, Baban D, Sun Y, Tarin D (1994) Effects of inoculation site and matrigel on growth and metastasis of human breast cancer cells. Br J Cancer 70:228–232

    Article  PubMed  CAS  Google Scholar 

  • Chan E, Patel A, Heston W, Larchian W (2009a) Mouse orthotopic models for bladder cancer research. BJU Int 104:1286–1291

    Article  Google Scholar 

  • Chan ES et al (2009b) Optimizing orthotopic bladder tumor implantation in a syngeneic mouse model. J Urol 182:2926–2931

    Article  Google Scholar 

  • Chang XH et al (1999) Improved metastatic animal model of human prostate carcinoma using surgical orthotopic implantation (SOI). Anticancer Res 19:4199–4202

    PubMed  CAS  Google Scholar 

  • Fu X, Hoffman RM (1993) Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res 13:283–286

    PubMed  CAS  Google Scholar 

  • Fu X, Le P, Hoffman RM (1993) A metastatic orthotopic-transplant nude-mouse model of human patient breast cancer. Anticancer Res 13:901–904

    PubMed  CAS  Google Scholar 

  • Furukawa T et al (1993) Nude mouse metastatic models of human stomach cancer constructed using orthotopic implantation of histologically intact tissue. Cancer Res 53:1204–1208

    PubMed  CAS  Google Scholar 

  • Gros SJ et al (2010) Complementary use of fluorescence and magnetic resonance imaging of metastatic esophageal cancer in a novel orthotopic mouse model. Int J Cancer 126:2671–2681

    PubMed  CAS  Google Scholar 

  • Hall SJ, Thompson TC (1997) Spontaneous but not experimental metastatic activities differentiate primary tumor-derived vs metastasis-derived mouse prostate cancer cell lines. Clin Exp Metastasis 15:630–638

    Article  PubMed  CAS  Google Scholar 

  • Hendrix A et al (2010) Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst 102(12):866–880

    Google Scholar 

  • Jenkins D, Hornig Y, Oei Y, Dusich J, Purchio T (2005) Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Res 7:R444–R454

    Article  PubMed  CAS  Google Scholar 

  • Jessani N et al (2004) Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc Natl Acad Sci U S A 101:13756–13761

    Article  PubMed  CAS  Google Scholar 

  • Kubota T (1994) Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem 56:4–8

    Article  PubMed  CAS  Google Scholar 

  • Kuperwasser C et al (2005) A Mouse model of human breast cancer metastasis to human bone. Cancer Res 65:6130–6138

    Article  PubMed  CAS  Google Scholar 

  • Le Dévédec SE, Lalai R, Pont C, de Bont H, van de Water B (2011) Two-photon intravital multicolor imaging combined with inducible gene expression to distinguish metastatic behavior of breast cancer cells in vivo. Mol Imaging Biol 13(1):67–77

    Google Scholar 

  • Lee H, Lin ECK, Liu L, Smith JW (2003) Gene expression profiling of tumor xenografts: In vivo analysis of organ-specific metastasis. Int J Cancer 107:528–534

    Article  PubMed  CAS  Google Scholar 

  • Lee NC et al (2000) Antimetastatic efficacy of adjuvant gemcitabine in a pancreatic cancer orthotopic model. Clin Exp Metastasis 18:379–384

    Article  PubMed  CAS  Google Scholar 

  • Lelekakis M et al (1999) A novel orthotopic model of breast cancer metastasis to bone. Clinical and Experimental Metastasis 17:163–170

    Article  PubMed  CAS  Google Scholar 

  • Li X et al (2002) Optically imageable metastatic model of human breast cancer. Clin Exp Metastasis 19:347–350

    Article  PubMed  CAS  Google Scholar 

  • Morioka CY, Saito S, Ohzawa K, Watanabe A (2000) Homologous orthotopic implantation models of pancreatic ductal cancer in Syrian golden hamsters: which is better for metastasis research–cell implantation or tissue implantation? Pancreas 20:152–157

    Article  PubMed  CAS  Google Scholar 

  • Rashidi B et al (2000a) A nude mouse model of massive liver and lymph node metastasis of human colon cancer. Anticancer Res 20:715–722

    CAS  Google Scholar 

  • Rashidi B et al (2000b) An orthotopic mouse model of remetastasis of human colon cancer liver metastasis. Clin Cancer Res 6:2556–2561

    CAS  Google Scholar 

  • Schmidt CM et al (1999) Characterization of spontaneous metastasis in an aggressive breast carcinoma model using flow cytometry. Clin Exp Metastasis 17:537–544

    Article  PubMed  CAS  Google Scholar 

  • Society CC (ed) Canadian Cancer Statistics 2010 (Toronto, Canada, 2010)

    Google Scholar 

  • Sun FX et al (1996) Metastatic models of human liver cancer in nude mice orthotopically constructed by using histologically intact patient specimens. J Cancer Res Clin Oncol 122:397–402

    Article  PubMed  CAS  Google Scholar 

  • Troiani T et al (2008) The use of xenograft models for the selection of cancer treatments with the EGFR as an example. Crit Rev Oncol Hematol 65:200–211

    Article  PubMed  Google Scholar 

  • Xue C et al (2006) Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res 66:192–197

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N et al (2003) Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging. Cancer Res 63:7785–7790

    PubMed  CAS  Google Scholar 

  • Yang M et al (1999) A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res 59:781–786

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Muller Ph. D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muller, W.J., Swanson, I. (2013). Orthotopic and Ectopic Models of Metastasis. In: Burnier, J., Burnier, Jr., M. (eds) Experimental and Clinical Metastasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3685-0_17

Download citation

Publish with us

Policies and ethics