Skip to main content

Novel Mg Rechargeable Battery Cathodes: Chevrel to Spinel

  • Chapter
  • First Online:
Next Generation Batteries
  • 1149 Accesses

Abstract

In this chapter, it is shown that spinel oxides such as MgCo2O4 work as cathode materials for Mg rechargeable batteries with a high redox potential about 2–3 V versus Mg2+/Mg on the basis of the similarity between spinel and rocksalt structures (Okamoto et al., Adv. Sci., 1500072, 2015, [1]). The Mg insertion into spinel lattices occurs via “insertion and push-out” process to form a rocksalt phase in the spinel mother phase. For example, by utilizing the valence change from Co(III) to Co(II) in MgCo2O4, Mg insertion occurs at a considerably high potential of about 2.9 V versus Mg2+/Mg, and similarly, it occurs at around 2.3 V versus Mg2+/Mg with the valence change from Mn(III) to Mn(II) in MgMn2O4. In addition, Mg2+ ions originally in MgMn2O4 and MgCr2O4 can be extracted to some extent because of the robust host structure. The “insertion and push-out” process proposed here provides a  new design of cathode materials for Mg rechargeable batteries, and various approaches are introduced to develop cathode materials based on this mechanism in the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Okamoto, S., Ichitsubo, T., Kawaguchi, T., Kumagai, Y., Oba, F., Yagi, S., et al. (2015). Advanced Science, 1500072.

    Google Scholar 

  2. Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., et al. (2000). Nature, 407, 724–727.

    Article  Google Scholar 

  3. Cheng, Y., Parent, L. R., Shao, Y., Wang, C., Sprenkle, V. L., Li, G., & Liu, J. (2014). Chemistry of Materials, 26, 4904.

    Article  Google Scholar 

  4. Novák, P., & Desilvestro, J. (1993). Journal of the Electrochemical Society, 140, 140.

    Article  Google Scholar 

  5. Gregory, T. D., Hoffman, R. J., & Winterton, R. (1990). Journal of the Electrochemical Society, 137, 775.

    Article  Google Scholar 

  6. Ichitsubo, T., Adachi, T., Yagi, S., & Doi, T. (2011). Journal of Materials Chemistry, 21, 11764.

    Article  Google Scholar 

  7. Yagi, S., Fukuda, M., Ichitsubo, T., Nitta, K., Mizumaki, M., & Matsubara, E. (2015). Journal of the Electrochemical Society, 162(12), A2356–A2361.

    Article  Google Scholar 

  8. Ichitsubo, T., Yagi, S., Nakamura, R., Ichikawa, Y., Okamoto, S., Sugimura, K., et al. (2014). Journal of Materials Chemistry A, 2(36), 14858–14866.

    Article  Google Scholar 

  9. Wan, L. F., Perdue, B. R., Apblett, C. A., & Prendergast, D. (2015). Chemistry of Materials, 27(17), 5932–5940.

    Article  Google Scholar 

  10. Thackeray, M. M., David, W. I. F., & Goodenough, J. B. (1982). Materials Research Bulletin, 17, 785.

    Article  Google Scholar 

  11. Ohzuku, T., Ueda, A., & Yamamoto, N. (1995). Journal of the Electrochemical Society, 142, 1431.

    Article  Google Scholar 

  12. Yagi, S., Morinaga, T., Togo, M., Tsuda, H., Shio, S., & Nakahira, A. (2016). Materials Transactions, 57(1), 42–45.

    Article  Google Scholar 

  13. Hagiwara, R., Tamaki, K., Kubota, K., Goto, T., & Nohira, T. (2008). Journal of Chemical and Engineering Data, 53, 355.

    Article  Google Scholar 

  14. Gao, B., Nohira, T., Hagiwara, R., & Wang, Z. (2014). Molten salts chemistry and technology. In M. Gaune-Escard & G. M. Haarberg (Eds.) (Chap. 5.4). Hoboken, NJ: Wiley.

    Google Scholar 

  15. Oishi, M., Ichitsubo, T., Okamoto, S., Toyoda, S., Matsubara, E., Nohira, T., & Hagiwara, R. (2014). Journal of the Electrochemical Society, 161, A943.

    Article  Google Scholar 

  16. Ichitsubo, T., Okamoto, S., Kawaguchi, T., Kumagai, Y., Oba, F., Yagi, S., et al. (2015). Journal of Materials Chemistry A, 3, 10188.

    Article  Google Scholar 

  17. Fukutsuka, T., Asaka, K., Inoo, A., Yasui, R., Miyazaki, K., Abe, T., et al. (2014). Chemistry Letters, 43, 1788.

    Article  Google Scholar 

  18. Han, J., Yagi, S., & Ichitsubo, T. (2019). Journal of Power Sources, 435, 226822.

    Article  Google Scholar 

  19. Izumi, F., & Momma, K. (2007). Solid State Phenomena, 130, 15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsu Ichitsubo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ichitsubo, T., Yagi, S. (2021). Novel Mg Rechargeable Battery Cathodes: Chevrel to Spinel. In: Kanamura, K. (eds) Next Generation Batteries. Springer, Singapore. https://doi.org/10.1007/978-981-33-6668-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6668-8_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6667-1

  • Online ISBN: 978-981-33-6668-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics