Skip to main content

Role of Growth Factors in the Treatment of Diabetic Foot Ulceration

  • Chapter
  • First Online:
Diabetic Foot Ulcer
  • 1020 Accesses

Abstract

Chronic foot ulceration is a common complication of diabetes mellitus which often leads to lower extremity amputation. Foot ulcer healing is a process that involves the interaction of various cells such as fibroblast, macrophages, keratinocytes to promote complex processes such as chemotaxis, angiogenesis, mitogenesis, apoptosis, and synthesis of extracellular matrix components. Presently, several therapeutic options are available to treat foot ulceration. Among them, treating patients with different growth factors is one of the most popular options. Growth factors are the polypeptides released by the blood platelets, endothelial cells, and macrophages, which are responsible for cellular growth and differentiation. Several growth factors also have the potential of promoting wound healing in diabetic patients. The subject of this chapter is the role of important growth factors in the treatment of diabetic foot ulceration and the possible promising approaches for foot ulcer management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

rhEGF:

Recombinant human epidermal growth factor

rhPDGF:

Recombinant human platelet-derived growth factor

S4PL:

Syndecan-4 proteo liposomes

References

  1. McGrath MH (1990) Peptide growth factors and wound healing. Clin Plast Surg 17:421–432

    Article  CAS  PubMed  Google Scholar 

  2. Rothe MJ, Falanga V (1992) Growth factors and wound healing. Clin Dermatol 9:553–559

    Article  Google Scholar 

  3. Papanas N, Maltezos E (2008) Becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Clin Interv Aging 3:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park JW, Hwang SR, Yoon IS (2017) Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 22(8):1259

    Article  PubMed Central  CAS  Google Scholar 

  5. Craig ME, Hattersley A, Donaghue KC (2009) Definition, epidemiology and classification of diabetes in children and adolescents. Pediatr Diabetes 10:3–12

    Article  PubMed  Google Scholar 

  6. Galtier F (2010) Definition, epidemiology, risk factors. Diabetes Metab 36:628–651

    Article  CAS  PubMed  Google Scholar 

  7. American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37:S81–S90

    Article  Google Scholar 

  8. Kharroubi AT, Darwish HM (2015) Diabetes mellitus: the epidemic of the century. World J Diabetes 6:850–867

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abbott CA, Carrington AL, Ashe H, North-West Diabetes Foot Care Study et al (2002) The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new DFU in a community-based patient cohort. Diabet Med 19:377–384

    Article  CAS  PubMed  Google Scholar 

  10. Centers for Disease Control and Prevention (2005) Lower extremity disease among persons aged ≥40 years with and without diabetes—United States, 1999–2002. MMWR Morb Mortal Wkly Rep 54:1158–1160

    Google Scholar 

  11. Lauterbach S, Kostev K, Kohlmann T (2010) Prevalence of diabetic foot syndrome and its risk factors in the UK. J Wound Care 19:333–337

    Article  CAS  PubMed  Google Scholar 

  12. Iraj B, Khorvash F, Ebneshahidi A, Askari G (2013) Prevention of diabetic foot ulcer. Int J Prev Med 4:373–376

    PubMed  PubMed Central  Google Scholar 

  13. McEwen LN, Ylitalo KR, Herman WH, Wrobel JS (2013) Prevalence and risk factors for diabetes-related foot complications in Translating Research Into Action for Diabetes (TRIAD). J Diabetes Complicat 27:588–592

    Article  Google Scholar 

  14. Shahbazian H, Yazdanpanah L, Latifi SM (2013) Risk assessment of patients with diabetes for foot ulcers according to risk classification consensus of International Working Group on Diabetic Foot (IWGDF). Pak J Med Sci 29:730–734

    PubMed  PubMed Central  Google Scholar 

  15. Waaijman R, de Haart M, Arts ML, Wever D, Verlouw AJ, Nollet F et al (2014) Risk factors for plantar foot ulcer recurrence in neuropathic diabetic patients. Diabetes Care 37:1697–1705

    Article  PubMed  Google Scholar 

  16. Edmonds ME, Foster AV (2006) Diabetic foot ulcers. BMJ 332:407–410. Review

    Article  PubMed  PubMed Central  Google Scholar 

  17. Omanakuttan A, Nambiar J, Harris RM, Bose C, Pandurangan N, Varghese RK et al (2012) Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. Mol Pharmacol 82:614–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Ashe HA, Parnell LN, Fernando DJ, Tsigos C, Young RJ et al (1994) The prevalence of foot ulceration and its correlates in type 2 diabetic patients: a population-based study. Diabet Med 11:480–484

    Article  CAS  PubMed  Google Scholar 

  19. Tesfaye S, Stevens LK, Stephenson JM, Fuller JH, Plater M, Ionescu-Tirgoviste C et al (1996) Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM Complications Study. Diabetologia 39:1377–1384

    Article  CAS  PubMed  Google Scholar 

  20. Pendsey S (2003) Diabetic foot: a clinical atlas. Jaypee Brothers Medical Publishers, New Delhi

    Book  Google Scholar 

  21. Management of peripheral arterial disease (PAD). TransAtlantic Inter-Society Consensus (TASC) (2000) Eur J Vasc Endovasc Surg 19:S1–250

    Google Scholar 

  22. Prompers L, Huijberts M, Apelqvist J, Jude E, Piaggesi A, Bakker K et al (2007) High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia 50:18–25

    Article  CAS  PubMed  Google Scholar 

  23. Benotmane A, Mohammedi F, Ayad F, Kadi K, Azzouz A (2000) Diabetic foot lesions: etiologic and prognostic factors. Diabetes Metab 26:113–117

    CAS  PubMed  Google Scholar 

  24. Armstrong DG, Boulton AJM, Bus SA (2017) Diabetic foot ulcers and their recurrence. N Engl J Med 376:2367–2375

    Article  PubMed  Google Scholar 

  25. Grotendorst GR, Martin GR, Pencev D, Sodek J, Harvey AK (1985) Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. J Clin Invest 76:2323–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buckley A, Davidson JM, Kamerath CD, Woodward SC (1987) Epidermal growth factor increases granulation tissue formation dose dependently. J Surg Res 43:322–328

    Article  CAS  PubMed  Google Scholar 

  27. Broadley KN, Aquino AM, Hicks B, Ditesheim JA, McGee GS, Demetriou AA et al (1988) Growth factors bFGF and TGF beta accelerate the rate of wound repair in normal and in diabetic rats. Int J Tissue React 10:345–353

    CAS  PubMed  Google Scholar 

  28. Trojanowska M (2008) Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology (Oxford) 47:v2–v4

    Article  CAS  Google Scholar 

  29. Li X, Pontén A, Aase K, Karlsson L, Abramsson A, Uutela M et al (2000) PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat Cell Biol 2:302–309

    Article  CAS  PubMed  Google Scholar 

  30. Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH et al (2001) PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol 3:512–516

    Article  CAS  PubMed  Google Scholar 

  31. Frederiksson L, Li H, Eriksson U (2004) The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 15:197–204

    Article  CAS  Google Scholar 

  32. Heldin CH, Eriksson U, Ostman A (2002) New members of the platelet derived growth factor family of mitogens. Arch Biochem Biophys 398:284–290

    Article  CAS  PubMed  Google Scholar 

  33. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    Article  CAS  PubMed  Google Scholar 

  34. Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A (1991) Role of platelet-derived growth factor in wound healing. J Cell Biochem 45:319–326. Review

    Article  CAS  PubMed  Google Scholar 

  35. Heldin CH, Rönnstrand L (1988) The platelet-derived growth factor receptor. In: Moudgil VK (ed) Receptor phosphorylation. CRC Press, Boca Raton, pp 149–162

    Google Scholar 

  36. Steed DL (1994) Clinical evaluation of recombinant human platelet derived growth factor for the treatment of lower extremity diabetic ulcers. J Vasc Surg 21:71–81

    Article  Google Scholar 

  37. Bennett SP, Griffiths GD, Schor AM, Leese GP, Schor SL (2003) Growth factors in the treatment of diabetic foot ulcers. Br J Surg 90:133–146. Review

    Article  CAS  PubMed  Google Scholar 

  38. Mandial V, Gupta M, Sharma R (2017) Evaluation of recombinant human platelet derived growth factor-BB in healing of chronic diabetic foot ulcers. Int J Contemp Med Res 4:1607–1610

    Google Scholar 

  39. Das S, Majid M, Baker AB (2016) Syndecan-4 enhances PDGF-BB activity in diabetic wound healing. Acta Biomater 42:56–65

    Article  CAS  PubMed  Google Scholar 

  40. Rangaswamy P, Rubby SA, Prasanth K (2017) Prospective study if platelet derived growth factor in wound healing of diabetic foot ulcers in Indian population. Int Surg J. https://doi.org/10.18203/2349-2902.isj20164428

  41. Robson MC, Mustoe TA, Hunt TK (1998) The future of recombinant growth factors in wound healing. Am J Surg 176:80S–82S

    Article  CAS  PubMed  Google Scholar 

  42. Kunimoto BT (1999) Growth factors in wound healing: the next great innovation? Ostomy Wound Manage 45:56–64

    CAS  PubMed  Google Scholar 

  43. Ladin D (2000) Becaplermin gel (PDGF-BB) as topical wound therapy. Plastic Surgery Educational Foundation DATA Committee. Plast Reconstr Surg 105:1230–1231

    Article  CAS  PubMed  Google Scholar 

  44. Nagai MK, Embil JM (2002) Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert Opin Biol Ther 2:211–218

    Article  CAS  PubMed  Google Scholar 

  45. Ghatnekar O, Persson U, Willis M, Odegaard K (2001) Cost effectiveness of Becaplermin in the treatment of diabetic foot ulcers in four European countries. PharmacoEconomics 19:767–778

    Article  CAS  PubMed  Google Scholar 

  46. Kantor J, Margolis DJ (2001) Treatment options for diabetic neuropathic foot ulcers: a cost-effectiveness analysis. Dermatol Surg 27:347–351

    CAS  PubMed  Google Scholar 

  47. Brown GL, Curtsinger L, Brightwell GR, Ackerman DM, Tobin GR, Polk HC Jr et al (1986) Enhancement of epidermal regeneration by biosynthetic epidermal growth factor. J Exp Med 163:1319–1324

    Article  CAS  PubMed  Google Scholar 

  48. Nanney LB (1990) Epidermal and dermal effect of epidermal growth factor during wound repair. J Invest Dermatol 94:624–629

    Article  CAS  PubMed  Google Scholar 

  49. Servold SA (1991) Growth factor impact on wound healing. Clin Podiatr Med Surg 8:937–953

    CAS  PubMed  Google Scholar 

  50. Brown GL, Curtsinger L, Jurkiewics MJ, Nahai F, Schultz G (1991) Stimulation of healing of chronic wounds by epidermal growth factor. Plast Reconstr Surg 88:189–196

    Article  CAS  PubMed  Google Scholar 

  51. Tsang MW, Wong WK, Hung CS, Lai KM, Tang W, Cheung EY et al (2003) Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care 26:1856–1861

    Article  CAS  PubMed  Google Scholar 

  52. Singla S, Garg R, Kumar A, Gill C (2014) Efficacy of topical application of beta urogastrone (recombinant human epidermal growth factor) in Wagner’s Grade 1 and 2 diabetic foot ulcers: comparative analysis of 50 patients. J Natl Sci Biol Med 5:273–277

    Article  CAS  Google Scholar 

  53. Gomez-Villa R, Aguilar-Rebolledo F, Lozano-Platonoff A, Teran-Soto JM, Fabian Victoriano MR, Kresch-Tronik NS et al (2014) Efficacy of intralesional recombinant human epidermal growth factor in diabetic foot ulcers in Mexican patients: a randomized double-blinded controlled trial. Wound Repair Regen 22:497–503

    Article  PubMed  Google Scholar 

  54. Dumantepe M, Fazliogullari O, Seren M, Uyar I, Basar F (2015) Efficacy of intralesional recombinant human epidermal growth factor in chronic diabetic foot ulcers. Growth Factors 33:128–132

    Article  CAS  PubMed  Google Scholar 

  55. Yang S, Geng Z, Ma K, Sun X, Fu X (2016) Efficacy of topical recombinant human growth factors in diabetic foot ulcers 315 © 1996–2018 epidermal growth factor for treatment of diabetic foot ulcer: a systematic review and meta-analysis. Int J Low Extrem Wounds 15:120–125

    Article  PubMed  Google Scholar 

  56. Hong JP, Jung HD, Yun W (2006) Recombinant human epidermal growth factor (EGF) to enhance healing for diabetic foot ulcers. Ann Plast Surg 56:394–398

    Article  CAS  PubMed  Google Scholar 

  57. Manoharan GV, Venkatesh G, Shanmugam S (2016) A comparative study on wound healing with topical application of human epidermal growth factor verses application of povidone-iodine in diabetic wounds. Sch J App Med Sci 4:2302–2306

    Article  Google Scholar 

  58. Mohan VK (2007) Recombinant human epidermal growth factor (REGEN-D™ 150): effect on healing of diabetic foot ulcers. Diabetes Res Clin Pract 78:405–411

    Article  CAS  PubMed  Google Scholar 

  59. Tuyet HL, Quynh N, Tran T, Minh H, Bich DN, Dinh T et al (2009) The efficacy and safety of epidermal growth factor in treatment of diabetic foot ulcers: the preliminary results. Int Wound J 6:159–166

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bennett NT, Schultz GS (1993) Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg 165:728–737

    Article  CAS  PubMed  Google Scholar 

  61. Lawrence WT, Diegelman RF (1994) Growth factors in wound healing. Clin Dermatol 12:157–169

    Article  CAS  PubMed  Google Scholar 

  62. Yang L, Qiu CX, Ludlow A, Fergusson MWJ, Brunner G (1999) Active transforming growth factor-β in wound repair. Determination using a new assay. Am J Pathol 154:105–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Breuing K, Andree C, Helo G, Slama J, Liu PY, Eriksson E (1997) Growth factors in the repair of partial thickness porcine skin wounds. Plast Reconstr Surg 100:657–664

    Article  CAS  PubMed  Google Scholar 

  64. Crowe MJ, Doetschman T, Greenhalgh DG (2000) Delayed wound healing in immunodeficient TGF-β1 knockout mice. J Invest Dermatol 115:3–11

    Article  CAS  PubMed  Google Scholar 

  65. Wu L, Xia YP, Roth SI, Grushkin E, Mustoe TA (1999) Transforming growth factor-β1 fails to stimulate wound healing and impairs its signal transduction in an aged ischaemic ulcer model. Am J Pathol 154:301–309

    Article  PubMed  PubMed Central  Google Scholar 

  66. Graham A (1998) The use of growth factors in clinical practice. J Wound Care 7:536–540

    Article  CAS  PubMed  Google Scholar 

  67. Ishimoto S, Ishibashi T, Bottaro DP, Kaga K (2002) Direct application of keratinocyte growth factor, basic fibroblast growth factor and transforming growth factor-alpha during healing of tympanic membrane perforation in glucocorticoid-treated rats. Acta Otolaryngol 122:468–473

    Article  CAS  PubMed  Google Scholar 

  68. Van Der Boom R, Wilmink JM, O’Kane S, Wood J, Ferguson MW (2002) Transforming growth factor-beta levels during second-intention healing are related to the different course of wound contraction in horses and ponies. Wound Repair Regen 10:188–194

    Article  PubMed  Google Scholar 

  69. Fu X, Shen Z, Chen Y et al (2000) Recombinant bovine basic fibroblast growth factor accelerates wound healing in patients with burns, donor sites and chronic dermal ulcers. Chin Med J 113:367–371

    CAS  PubMed  Google Scholar 

  70. Beck PL, Rosenberg IM, Xavier RJ, Koh T, Wong JF, Podolsky DK (2003) Transforming growth factor-beta mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. Am J Pathol 162:597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Redmer DA, Reynolds LP (1996) Angiogenesis in the ovary. Rev Reprod 1:182–192

    Article  CAS  PubMed  Google Scholar 

  72. Reynolds LP, Redmer DA (1998) Expression of the angiogenic factors, basic fibroblast growth factor and vascular endothelial growth factor, in the ovary. J Anim Sci 76:1671–1681

    Article  CAS  PubMed  Google Scholar 

  73. Zimmerman MA, Selzman GH, Harken AH (1999) Surgical implications of therapeutic angiogenesis. Surgery 125:243–249

    Article  CAS  PubMed  Google Scholar 

  74. Gerwins P, Skoldenberg E, Claesson-Welsh L (2000) Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol/Hematol 34:185–194. 796

    Article  CAS  Google Scholar 

  75. Kibe Y, Takenaka H, Kishimoto S (2000) Spatial and temporal expression of basic fibroblast growth factor protein during wound healing of rat skin. Br J Dermatol 43:720–727

    Article  Google Scholar 

  76. Limat A, French LE (1999) Therapy with growth factors. Curr Probl Dermatol 27:49–56

    Article  CAS  PubMed  Google Scholar 

  77. Takehara K (2000) Growth regulation of skin fibroblasts. J Dermatol Sci 24:70–77

    Article  Google Scholar 

  78. Greenhalgh DG (1996) The role of growth factors in wound healing. J Trauma 41:159–167

    Article  CAS  PubMed  Google Scholar 

  79. Yang SL, Han R, Liu Y, Hu LY, Li XL, Zhu LY (2014) Negative pressure wound therapy is associated with up-regulation of bFGF and ERK1/2 in human diabetic foot wounds. Wound Repair Regen 22:548–554

    Article  PubMed  Google Scholar 

  80. Khoshkam V, Chan HL, Lin GH, Mailoa J, Giannobile WV, Wang HL et al (2015) Outcomes of regenerative treatment with rhPDGF-BB and rhFGF-2 for periodontal intra-bony defects: a systematic review and meta-analysis. J Clin Periodontol 42:272–280

    Article  CAS  PubMed  Google Scholar 

  81. Robson MC, Phillips LG, Lawrence WT, Bishop JB, Youngerman JS, Hayward PG et al (1992) The safety and effect of topically applied recombinant basic fibroblast growth factor on the healing of chronic pressure sores. Ann Surg 216:401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Richard JL, Parer-Richard C, Daures JP, Clouet S, Vannereau D, Bringer J et al (1995) Effect of topical basic fibroblast growth factor on the healing of chronic diabetic neuropathic ulcer of the foot: a pilot, randomized, double-blind, placebo-controlled study. Diabetes Care 18:64–69

    Article  CAS  PubMed  Google Scholar 

  83. Uchi H, Igarashi A, Urabe K, Koga T, Nakayama J, Kawamori R et al (2009) Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer. Eur J Dermatol 19:461–468

    Article  PubMed  Google Scholar 

  84. Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543

    Article  CAS  PubMed  Google Scholar 

  85. Redmer DA, Doraiswamy V, Bortnem BJ, Fisher K, Jablonka-Shariff A, Grazul-Bilska AT et al (2001) Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum. Biol Reprod 65:979–989

    Article  Google Scholar 

  86. Svendsen MN, Werther K, Nielsen HJ, Kristjansen PE (2002) VEGF and tumour angiogenesis. Impact of surgery, wound healing, inflammation and blood transfusion. Scand J Gastroenterol 37:373–379

    Article  PubMed  Google Scholar 

  87. Nissen NN, DiPietro LA (2000) Angiogenic mediators in healing wounds. In: Angiogenesis in health and disease. Springer, Boston, MA, pp 417–427

    Google Scholar 

  88. Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152:1445–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sheikh AY, Gibson JJ, Rollins MD, Hopf HW, Hussain Z, Hunt TK (2000) Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg 135:1293–1297

    Article  CAS  PubMed  Google Scholar 

  90. Taub PJ, Silver L, Weinberg H (2000) Plastic surgical perspectives on vascular endothelial growth factor as gene therapy for angiogenesis. Plast Reconstr Surg 105:1034–1042

    Article  CAS  PubMed  Google Scholar 

  91. Howdieshell TR, Callaway D, Webb WL, Gaines MD, Procter CD Jr, Sathyanarayana et al (2001) Antibody neutralization of vascular endothelial growth factor inhibits wound granulation tissue formation. J Surg Res 96:173–182

    Article  CAS  PubMed  Google Scholar 

  92. Dodge-Khatami A, Backer CL, Holinger LD, Mavroudis C, Cook KE, Crawford SE (2001) Healing of a free tracheal autograft is enhanced by topical vascular endothelial growth factor in an experimental rabbit model. J Thorac Cardiovasc Surg 122:554–561

    Article  CAS  PubMed  Google Scholar 

  93. Corral CJ, Siddiqui A, Wu L, Farrell CL, Lyons D, Mustoe TA (1999) Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing. Arch Surg 134:200–205

    Article  CAS  PubMed  Google Scholar 

  94. Breitbart AS, Grande DA, Laser J, Barcia M, Porti D, Malhotra S et al (2001) Treatment of ischemic wounds using cultured dermal fibroblasts transduced retrovirally with 798 wound healing: the role of growth factors PDGF-B and VEGF121 genes. Ann Plast Surg 46:555–561

    Article  CAS  PubMed  Google Scholar 

  95. Deodato B, Arsic N, Zentilin L, Galeano M, Santoro D, Torre V et al (2002) Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther 9:777–785

    Article  CAS  PubMed  Google Scholar 

  96. Kulwas A, Drela E, Jundziłł W, Góralczyk B, Ruszkowska-Ciastek B, Rość D (2015) Circulating endothelial progenitor cells and angiogenic factors in diabetes complicated diabetic foot and without foot complications. J Diabetes Complicat 29:686–690

    Article  Google Scholar 

  97. Zhou K, Ma Y, Brogan MS (2015) Chronic and non-healing wounds: the story of vascular endothelial growth factor. Med Hypotheses 85:399–404

    Article  CAS  PubMed  Google Scholar 

  98. Amoli MM, Hasani-Ranjbar S, Roohipour N, Sayahpour FA, Amiri P, Zahedi P et al (2011) VEGF gene polymorphism association with diabetic foot ulcer. Diabetes Res Clin Pract 93:215–219

    Article  CAS  PubMed  Google Scholar 

  99. Hanft JR, Pollak RA, Barbul A, van Gils C, Kwon PS, Gray SM et al (2008) Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J Wound Care 17(30–2):34–37

    Google Scholar 

  100. Losi P, Briganti E, Errico C, Lisella A, Sanguinetti E, Chiellini F et al (2013) Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 9:7814–7821

    Article  CAS  PubMed  Google Scholar 

  101. Gardner JC, Wu H, Noel JG (2016) Keratinocyte growth factor supports pulmonary innate immune defense through the maintenance of alveolar antimicrobial protein levels and macrophage function. Am J Phys Lung Cell Mol Phys 310:L868–L879

    Google Scholar 

  102. Fricker J (1998) Keratinocyte growth factor on trial for wound repair. Mol Med Today 4:229

    Article  CAS  PubMed  Google Scholar 

  103. Robson MC, Phillips TJ, Falanga V, Odenheimer DJ, Parish LC, Jensen JL et al (2001) Randomized trial of topically applied repifermin (recombinant human keratinocyte growth factor-2) to accelerate wound healing in venous ulcers. Wound Repair Regen 9:347–352

    Article  CAS  PubMed  Google Scholar 

  104. Brown DL, Kane CD, Chernausek SD, Greenhalgh DG (1997) Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. Am J Pathol 151:715–724

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Blakytny R, Jude EB, Martin Gibson J, Boulton AJ, Ferguson MW (2000) Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J Pathol 190:589–594

    Article  CAS  PubMed  Google Scholar 

  106. Mason RM, Wahab NA (2003) Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14:1358–1373

    Article  CAS  PubMed  Google Scholar 

  107. Vranckx JJ, Hoeller D, Velander PE, Theopold CF, Petrie N, Takedo A et al (2007) Cell suspension cultures of allogenic keratinocytes are efficient carriers for ex vivo gene transfer and accelerate the healing of full-thickness skin wounds by overexpression of human epidermal growth factor. Wound Repair Regen 15:657–664

    Article  PubMed  Google Scholar 

  108. Demidova-Rice TN, Hamblin MR, Herman IM (2012) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, Part 2: Role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Skin Wound Care 25:349–370

    Article  PubMed  PubMed Central  Google Scholar 

  109. Moura LI, Dias AM, Carvalho E, de Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater 9:7093–7114

    Article  CAS  PubMed  Google Scholar 

  110. Smith DM, Simon JK, Baker JR (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13:592–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Degim Z (2008) Use of microparticulate systems to accelerate skin wound healing. J Drug Target 16:437–448

    Article  CAS  PubMed  Google Scholar 

  112. Ye M, Kim S, Park K (2010) Issues in long-term protein delivery using biodegradable microparticles. J Control Release 146:241–260

    Article  CAS  PubMed  Google Scholar 

  113. Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M (2015) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine 11:1551–1573

    Article  CAS  PubMed  Google Scholar 

  114. Dong X, Xu J, Wang W, Luo H, Liang X, Zhang L et al (2008) Repair effect of diabetic ulcers with recombinant human epidermal growth factor loaded by sustained-release microspheres. Sci China C Life Sci 51:1039–1044

    Article  PubMed  Google Scholar 

  115. Porporato PE, Payen VL, De Saedeleer CJ, Preat V, Thissen JP, Feron O et al (2012) Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 15:581–592

    Article  CAS  PubMed  Google Scholar 

  116. Zhang X, Kang X, Jin L, Bai J, Liu W, Wang Z (2018) Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF). Int J Nanomedicine 13:3897–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dwivedi C, Pandey I, Pandey H, Patil S, Mishra SB, Pandey AC et al (2018) In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor. J Biomed Mater Res A 106:641–651

    Article  CAS  PubMed  Google Scholar 

  118. Akita S, Hayashida K, Takaki S, Kawakami Y, Oyama T, Ohjimi H (2017) The neck burn scar contracture: a concept of effective treatment. Burns Trauma 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  119. Centeno-Cerdas C, Jarquin-Cordero M, Chavez MN, Hopfner U, Holmes C, Schmauss D et al (2018) Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds. Acta Biomater 81:184–194

    Article  CAS  PubMed  Google Scholar 

  120. Shi R, Lian W, Han S, Cao C, Jin Y, Yuan Y et al (2018) Nanosphere-mediated co-delivery of VEGF-A and PDGF-B genes for accelerating diabetic foot ulcers healing in rats. Gene Ther 25:425–438

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.S. expresses her sincere gratitude to CSIR, India for Fellowship. H.R.S. is thankful to the UGC [Grant no. F.30-377/2017(BSR)] and DST-SERB (Grant no. EMR/20l7/001758), New Delhi, for providing financial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hifzur R. Siddique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D., Siddique, H.R. (2021). Role of Growth Factors in the Treatment of Diabetic Foot Ulceration. In: Zubair, M., Ahmad, J., Malik, A., Talluri, M.R. (eds) Diabetic Foot Ulcer. Springer, Singapore. https://doi.org/10.1007/978-981-15-7639-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7639-3_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7638-6

  • Online ISBN: 978-981-15-7639-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics