Skip to main content

Advertisement

Log in

Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Wounds notoriously accumulate lactate as a consequence of both anaerobic and aerobic glycolysis following microcirculation disruption, immune activation, and increased cell proliferation. Several pieces of evidence suggest that lactate actively participates in the healing process through the activation of several molecular pathways that collectively promote angiogenesis. Lactate indeed stimulates endothelial cell migration and tube formation in vitro, as well as the recruitment of circulating vascular progenitor cells and vascular morphogenesis in vivo. In this study, we examined whether the pro-angiogenic potential of lactate may be exploited therapeutically to accelerate wound healing. We show that lactate delivered from a Matrigel matrix improves reperfusion and opposes muscular atrophy in ischemic hindlimb wounds in mice. Both responses involve lactate-induced reparative angiogenesis. Using microdialysis and enzymatic measurements, we found that, contrary to poly-L-lactide (PLA), a subcutaneous implant of poly-D,L-lactide-co-glycolide (PLGA) allows sustained local and systemic lactate release. PLGA promoted angiogenesis and accelerated the closure of excisional skin wounds in different mouse strains. This polymer is FDA-approved for other applications, emphasizing the possibility of exploiting PLGA therapeutically to improve wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trabold O, Wagner S et al (2003) Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 11:504–509

    Article  PubMed  Google Scholar 

  2. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299

    Article  PubMed  CAS  Google Scholar 

  3. Halestrap AP, Meredith D (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447:619–628

    Article  PubMed  CAS  Google Scholar 

  4. Schreml S, Szeimies RM et al (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163:257–268

    Article  PubMed  CAS  Google Scholar 

  5. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  CAS  Google Scholar 

  6. Hunt TK, Conolly WB, Aronson SB, Goldstein P (1978) Anaerobic metabolism and wound healing: an hypothesis for the initiation and cessation of collagen synthesis in wounds. Am J Surg 135:328–332

    Article  PubMed  CAS  Google Scholar 

  7. Ghani QP, Wagner S, Hussain MZ (2003) Role of ADP-ribosylation in wound repair. The contributions of Thomas K. Hunt, MD. Wound Repair Regen 11:439–444

    Article  PubMed  Google Scholar 

  8. Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    Article  PubMed  CAS  Google Scholar 

  9. Green H, Goldberg B (1964) Collagen and cell protein synthesis by an established mammalian fibroblast line. Nature 204:347–349

    Article  PubMed  CAS  Google Scholar 

  10. Hussain MZ, Ghani QP, Hunt TK (1989) Inhibition of prolyl hydroxylase by poly(ADP-ribose) and phosphoribosyl-AMP. Possible role of ADP-ribosylation in intracellular prolyl hydroxylase regulation. J Biol Chem 264:7850–7855

    PubMed  CAS  Google Scholar 

  11. Constant JS, Feng JJ et al (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8:353–360

    Article  PubMed  CAS  Google Scholar 

  12. Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153:587–598

    Article  PubMed  CAS  Google Scholar 

  13. Kumar VB, Viji RI, Kiran MS, Sudhakaran PR (2007) Endothelial cell response to lactate: implication of PAR modification of VEGF. J Cell Physiol 211:477–485

    Article  PubMed  CAS  Google Scholar 

  14. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560

    Article  PubMed  CAS  Google Scholar 

  15. Sonveaux P, Copetti T et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE 7:e33418

    Article  PubMed  CAS  Google Scholar 

  16. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115

    Article  PubMed  CAS  Google Scholar 

  17. Lu H, Dalgard CL et al (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280:41928–41939

    Article  PubMed  CAS  Google Scholar 

  18. Li F, Sonveaux P et al (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74

    Article  PubMed  Google Scholar 

  19. Milovanova TN, Bhopale VM et al (2008) Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol 28:6248–6261

    Article  PubMed  CAS  Google Scholar 

  20. Murray B, Wilson DJ (2001) A study of metabolites as intermediate effectors in angiogenesis. Angiogenesis 4:71–77

    Article  PubMed  CAS  Google Scholar 

  21. Beckert S, Farrahi F et al (2006) Lactate stimulates endothelial cell migration. Wound Repair Regen 14:321–324

    Article  PubMed  Google Scholar 

  22. Burns PA, Wilson DJ (2003) Angiogenesis mediated by metabolites is dependent on vascular endothelial growth factor (VEGF). Angiogenesis 6:73–77

    Article  PubMed  CAS  Google Scholar 

  23. Hunt TK, Aslam RS et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9:1115–1124

    Article  PubMed  CAS  Google Scholar 

  24. Couffinhal T, Silver M et al (1998) Mouse model of angiogenesis. Am J Pathol 152:1667–1679

    PubMed  CAS  Google Scholar 

  25. Sonveaux P, Martinive P et al (2004) Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 95:154–161

    Article  PubMed  CAS  Google Scholar 

  26. Del Prete E, Lutz TA, Scharrer E (2004) Inhibition of glucose oxidation by alpha-cyano-4-hydroxycinnamic acid stimulates feeding in rats. Physiol Behav 80:489–498

    Article  PubMed  Google Scholar 

  27. Sonveaux P, Vegran F et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    PubMed  CAS  Google Scholar 

  28. Hishiya A, Iemura S et al (2006) A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. EMBO J 25:554–564

    Article  PubMed  CAS  Google Scholar 

  29. Dehoux M, Van Beneden R et al (2004) Role of the insulin-like growth factor I decline in the induction of atrogin-1/MAFbx during fasting and diabetes. Endocrinology 145:4806–4812

    Article  PubMed  CAS  Google Scholar 

  30. Cao Y, Sonveaux P et al (2007) Systemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res 67:3835–3844

    Article  PubMed  CAS  Google Scholar 

  31. Peters T, Sindrilaru A et al (2005) Wound-healing defect of CD18(-/-) mice due to a decrease in TGF-beta1 and myofibroblast differentiation. EMBO J 24:3400–3410

    Article  PubMed  CAS  Google Scholar 

  32. Gutierrez-Fernandez A, Inada M et al (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J 21:2580–2591

    Article  PubMed  CAS  Google Scholar 

  33. Sindrilaru A, Peters T et al (2009) Wound healing defect of Vav3-/- mice due to impaired {beta}2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils. Blood 113:5266–5276

    Article  PubMed  CAS  Google Scholar 

  34. Milch HS, Schubert SY, Hammond S, Spiegel JH (2010) Enhancement of ischemic wound healing by inducement of local angiogenesis. Laryngoscope 120:1744–1748

    Article  PubMed  Google Scholar 

  35. Mendel DB, Schreck RE et al (2000) The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res 6:4848–4858

    PubMed  CAS  Google Scholar 

  36. Manning Fox JE, Meredith D, Halestrap AP (2000) Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 529(Pt 2):285–293

    PubMed  CAS  Google Scholar 

  37. Stabile E, Kinnaird T et al (2006) CD8 + T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4 + mononuclear cells through the expression of interleukin-16. Circulation 113:118–124

    Article  PubMed  Google Scholar 

  38. Koponen JK, Kekarainen T et al (2007) Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol Ther 15:2172–2177

    Article  PubMed  CAS  Google Scholar 

  39. Bonen A (2001) The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol 86:6–11

    Article  PubMed  CAS  Google Scholar 

  40. Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2002) Resistance vessel remodeling and reparative angiogenesis in the microcirculatory bed of long-term denervated skeletal muscles. Microvasc Res 63:96–114

    Article  PubMed  CAS  Google Scholar 

  41. Kawai K, Larson BJ et al (2011) Calcium-based nanoparticles accelerate skin wound healing. PLoS ONE 6:e27106

    Article  PubMed  CAS  Google Scholar 

  42. Mendel DB, Laird AD et al (2000) Development of SU5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des 15:29–41

    PubMed  CAS  Google Scholar 

  43. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25:19–25

    Article  PubMed  Google Scholar 

  44. Creager MA, Loscalzo J (2008) Diseases of the extremities. In: Fauci AS, Braunwald E, Kasper DL (eds) Harrison’s principles of internal medicine, 17th edn. McGraw Hill, New-York, pp 1568–1570

    Google Scholar 

  45. Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330

    PubMed  CAS  Google Scholar 

  46. Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350(Pt 1):219–227

    Article  PubMed  CAS  Google Scholar 

  47. Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA (2007) Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J 21:2602–2612

    Article  PubMed  CAS  Google Scholar 

  48. Porporato PE, Dadhich RK, Dhup S, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49

    Article  PubMed  Google Scholar 

  49. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  50. Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M (2007) Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci USA 104:967–972

    Article  PubMed  CAS  Google Scholar 

  51. Chang X, Wei C (2011) Glycolysis and rheumatoid arthritis. Int J Rheum Dis 14:217–222

    Article  PubMed  Google Scholar 

  52. Barba I, Garcia-Ramirez M et al (2010) Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest Ophthalmol Vis Sci 51:4416–4421

    Article  PubMed  Google Scholar 

  53. Shanmugasundaram M, Ram VK, Luft UC, Szerlip M, Alpert JS (2011) Peripheral arterial disease–what do we need to know? Clin Cardiol 34:478–482

    Article  PubMed  Google Scholar 

  54. Enerson BE, Drewes LR (2003) Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci 92:1531–1544

    Article  PubMed  CAS  Google Scholar 

  55. Cori CF, Cori GT (1929) Glycogen formation in the liver with d- and l-lactic acid. J Biol Chem 81:389–403

    CAS  Google Scholar 

  56. Patel MS, Jomain-Baum M, Ballard FJ, Hanson RW (1971) Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue. J Lipid Res 12:179–191

    PubMed  CAS  Google Scholar 

  57. Pagliassotti MJ, Donovan CM (1990) Role of cell type in net lactate removal by skeletal muscle. Am J Physiol 258:E635–E642

    PubMed  CAS  Google Scholar 

  58. Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm 415:34–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the European Research Council (FP7/2007-2013 ERC Independent Researcher Starting Grant No. 243188 TUMETABO to P.S.), an Action de Recherche Concertée from the Communauté Française de Belgique (to P.S. and O.F.), the Fondation Belge contre le Cancer (200-2008 to P.S. and O.F.), the Fonds National de la Recherche Scientifique Médicale (FRSM), the Association Française contre les Myopathies (AFM), and the Fonds National de la Recherche Scientifique (F.R.S.-FNRS). P.S. is a Research Associate and O.F. an honorary Research Director of the F.R.S.-FNRS. C.D.S. is a Télévie Research Fellow. The authors thank Elise Beneteau, Morgane Tardy and Claire Ploquin for excellent technical assistance, and Pharmacists at Pharmacie Digitale (Kraainem) for providing the cetomacrogol cream. Dedicated to the loving memory of Mrs Anne-Sophie Brouckaert, PharmD.

Ethics statement

All the procedures described in this study and pertaining to the use and care of small laboratory animals have been approved by UCL authorities according to Belgian National Animal Care Regulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Sonveaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porporato, P.E., Payen, V.L., De Saedeleer, C.J. et al. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 15, 581–592 (2012). https://doi.org/10.1007/s10456-012-9282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9282-0

Keywords

Navigation