Skip to main content

Small in Size, Big in Impact: Marine Microbes, a Boon for Biotherapeutics

  • Chapter
  • First Online:
Marine Niche: Applications in Pharmaceutical Sciences

Abstract

Due to re-emerging infections and multiple drug-resistant pathogens, scientists initiated the investigation of marine microbes for their anti-infective characteristics. About 70% of the Earth’s surface gets cover by the ocean, which is a vast habitat for marine microbes, and out of those few microbial classes endure only in the sea. The benefit with the marine microbes is that it fits in the traditional pharmaceutical “model,” so there is no need for the extra effort for drug extraction from them. The marine microbes secrete the secondary metabolites, having a variety of bioactivities. In the 1950s, two drugs (Ara-C as anticancer and Ara-A as antiviral) isolated from a shallow-water sponge of the Florida coast launched in the market for the first time opened the gate for the marine microbes as the promising source of new drugs. The marine microbes also produce nutritional supplements, for example, marine alga secretes the docosahexaenoic acid (DHA), which is an essential unsaturated fatty acid of breast milk, and, nowadays, this is used in the formula milk of infants. The ocean should be explored more in search of novel marine drugs because the preclinical marine pharmacology pipeline is found to be very productive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Lateff A (2008) Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett 49(45):6398–6400

    Article  CAS  Google Scholar 

  • Agostoni C (2008) Role of long-chain polyunsaturated fatty acids in the first year of life. J Pediatr Gastroenterol Nutr 47:S41–S44

    Article  CAS  PubMed  Google Scholar 

  • Ahn GN, Kim KN, Cha SH, Song CB, Lee J, Heo MS, Yeo IK, Lee NH, Jee YH, Kim JS, Heu MS (2007) Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H 2 O 2-mediated DNA damage. Eur Food Res Technol 226(1–2):71–79

    Article  CAS  Google Scholar 

  • Amagata T, Doi M, Ohta T, Minoura K, Numata A (1998) Absolute stereostructures of novel cytotoxic metabolites, gymnastatins A–E, from a Gymnascella species separated from a Halichondria sponge. J Chem Soc Perkin Trans 1(21):3585–3600

    Article  Google Scholar 

  • Artan M, Li Y, Karadeniz F, Lee SH, Kim MM, Kim SK (2008) Anti-HIV-1 activity of phloroglucinol derivative, 6, 6′-bieckol, from Ecklonia cava. Bioorg Med Chem 16(17):7921–7926

    Article  CAS  PubMed  Google Scholar 

  • Asami Y, Jang JH, Soung NK, He L, Moon DO, Kim JW, Oh H, Muroi M, Osada H, Kim BY, Ahn JS (2012) Protuboxepin A, a marine fungal metabolite, inducing metaphase arrest and chromosomal misalignment in tumor cells. Bioorg Med Chem 20(12):3799–3806

    Article  CAS  PubMed  Google Scholar 

  • Athukorala Y, Jeon YJ (2005) Screening for angiotensin 1-converting enzyme inhibitory activity of Ecklonia cava. Prev Nutr Food Sci 10(2):134–139

    Article  Google Scholar 

  • Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J 23(15):3175–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann W, Burke DC (1955) Contributions to the study of marine products. Xxxix. The nucleosides of sponges. Iii. 1 spongothymidine and Spongouridine2. J Org Chem 20(11):1501–1507

    Article  CAS  Google Scholar 

  • Bergmann W, Feeney RJ (1951) Contributions to the study of marine products. XXXII. The nucleosides of sponges. I. J Org Chem 16(6):981–987

    Article  CAS  Google Scholar 

  • Bister B, Bischoff D, Ströbele M, Riedlinger J, Reicke A, Wolter F, Bull AT, Zähner H, Fiedler HP, Süssmuth RD (2004) Abyssomicin C—A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed 43(19):2574–2576

    Article  CAS  Google Scholar 

  • Carlson JC, Li S, Burr DA, Sherman DH (2009) Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. J Nat Prod 72(11):2076–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha SH, Lee KW, Jeon YJ (2006) Screening of extracts from red algae in Jeju for potentials MarineAngiotensin-I converting enzyme (ACE) inhibitory activity. Algae 21(3):343–348

    Article  Google Scholar 

  • Charan RD, Schlingmann G, Janso J, Bernan V, Feng X, Carter GT (2004) Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 67(8):1431–1433

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Wang F, Zhang H, Chen B (2015) Brentuximab vedotin for treatment of relapsed or refractory malignant lymphoma: results of a systematic review and meta-analysis of prospective studies. Drug Des Devel Ther 9:2277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa M, Garcia M, Costa-Rodrigues J, Costa M, Ribeiro M, Fernandes M, Barros P, Barreiro A, Vasconcelos V, Martins R (2013) Exploring bioactive properties of marine cyanobacteria isolated from the Portuguese coast: high potential as a source of anticancer compounds. Mar Drugs 12(1):98–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson BS (1995) New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol 6(3):284–291

    Article  CAS  Google Scholar 

  • do Rosário Martins M, Costa M (2015) Marine cyanobacteria compounds with anticancer properties: implication of apoptosis. In: Handbook of anticancer drugs from marine origin. Springer, Cham, pp 621–647

    Chapter  Google Scholar 

  • Dou H, Song Y, Liu X, Gong W, Li E, Tan R, Hou Y (2011) Chaetoglobosin Fex from the marine-derived endophytic fungus inhibits induction of inflammatory mediators via toll-like receptor 4 signaling in macrophages. Biol Pharm Bull 34(12):1864–1873

    Article  CAS  PubMed  Google Scholar 

  • Efferth T (2010) Cancer therapy with natural products and medicinal plants. Planta Med 76(11):1035–1036

    Article  CAS  PubMed  Google Scholar 

  • El-Gendy MM, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008) Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot 61(3):149

    Article  CAS  Google Scholar 

  • Engene N, Choi H, Esquenazi E, Rottacker EC, Ellisman MH, Dorrestein PC, Gerwick WH (2011) Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus. Environ Microbiol 13(6):1601–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engene N, Rottacker EC, Kaštovský J, Byrum T, Choi H, Ellisman MH, Komárek J, Gerwick WH (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 62(Pt 5):1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabregas J, Herrero C (1990) Vitamin content of four marine microalgae. Potential use as source of vitamins in nutrition. J Ind Microbiol 5(4):259–263

    Article  CAS  Google Scholar 

  • Field HJ, De Clercq E (2004) Antiviral drugs-a short history of their discovery and development. Microbiol Today 31(2):58–61

    Google Scholar 

  • Gao X, Lu Y, Xing Y, Ma Y, Lu J, Bao W, Wang Y, Xi T (2012) A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 167(10):616–622

    Article  CAS  PubMed  Google Scholar 

  • Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19(1):85–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry BE, Van Alstyne KL (2004) Effects of uv radiation on growth and phlorotannins in fucus gardneri (phaeophyceae) juveniles and embryos 1. J Phycol 40(3):527–533

    Article  CAS  Google Scholar 

  • Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ (2009a) Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol 615(1–3):252–256

    Article  CAS  PubMed  Google Scholar 

  • Heo SJ, Ko SC, Cha SH, Kang DH, Park HS, Choi YU, Kim D, Jung WK, Jeon YJ (2009b) Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol In Vitro 23(6):1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Hong R (2011) Secalonic acid D as a novel DNA topoisomerase I inhibitor from marine lichen-derived fungus Gliocladium sp. T31. Pharm Biol 49(8):796–799

    Article  CAS  PubMed  Google Scholar 

  • Hwang H, Chen T, Nines RG, Shin HC, Stoner GD (2006) Photochemoprevention of UVB-induced skin carcinogenesis in SKH-1 mice by brown algae polyphenols. Int J Cancer 119(12):2742–2749

    Article  CAS  PubMed  Google Scholar 

  • Joe MJ, Kim SN, Choi HY, Shin WS, Park GM, Kang DW, Kim YK (2006) The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biol Pharm Bull 29(8):1735–1739

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Hyun SK, Kim HR, Choi JS (2006) Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fish Sci 72(6):1292–1299

    Article  CAS  Google Scholar 

  • Jung HA, Yoon NY, Woo MH, Choi JS (2008) Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase. Fish Sci 74(6):1363–1365

    Article  CAS  Google Scholar 

  • Kanase HR, Singh KN (2018) Marine pharmacology: potential, challenges, and future in India. J Med Sci 38(2):49

    Article  Google Scholar 

  • Karuppiah V, Zhang F, Li Z (2015) Natural products with anticancer activity from marine fungi. In: Handbook of anticancer drugs from marine origin. Springer, Cham, pp 253–267

    Chapter  Google Scholar 

  • Kim SK (ed) (2014) Handbook of anticancer drugs from marine origin. Springer, Cham

    Google Scholar 

  • Kong CS, Kim JA, Yoon NY, Kim SK (2009) Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food Chem Toxicol 47(7):1653–1658

    Article  CAS  PubMed  Google Scholar 

  • Leao PN, Costa M, Ramos V, Pereira AR, Fernandes VC, Domingues VF, Gerwick WH, Vasconcelos VM, Martins R (2013) Antitumor activity of hierridin B, a cyanobacterial secondary metabolite found in both filamentous and unicellular marine strains. PLoS One 8(7):e69562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JG, Yoo ID, Kim WG (2007) Differential antiviral activity of benzastatin C and its dechlorinated derivative from Streptomyces nitrosporeus. Biol Pharm Bull 30(4):795–797

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Hong JK, Lee CO, Bae KS, Kim DK, Jung JH (2010) A cytotoxic lipopeptide from the sponge-derived fungus Aspergillus versicolor. Bull Kor Chem Soc 31(1):205–208

    Article  CAS  Google Scholar 

  • Liang Y, Xie X, Chen L, Yan S, Ye X, Anjum K, Huang H, Lian X, Zhang Z (2016) Bioactive polycyclic quinones from marine Streptomyces sp. 182SMLY. Mar Drugs 14(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Zhu H, Fu P, Wang Y, Zhang Z, Lin H, Liu P, Zhuang Y, Hong K, Zhu W (2010) Cytotoxic polyphenols from the marine-derived fungus Penicillium expansum. J Nat Prod 73(5):911–914

    Article  CAS  PubMed  Google Scholar 

  • Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64(7):907–910

    Article  CAS  PubMed  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2013) RETRACTED: marine actinobacterial metabolites: current status and future perspectives [retracted in: Microbiol Res. 2018 Jun;211:69]. Microbiol Res 168(6):311–332. https://doi.org/10.1016/j.micres.2013.02.002

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169(4):262–278

    Article  CAS  PubMed  Google Scholar 

  • Maskey RP, Li FC, Qin S, Fiebig HH, Laatsch H (2003) Chandrananimycins AC: production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J Antibiot 56(7):622–629

    Article  CAS  Google Scholar 

  • Matsuda S, Adachi K, Matsuo Y, Nukina M, Shizuri Y (2009) Salinisporamycin, a novel metabolite from Salinispora arenicora. J Antibiot 62(9):519

    Article  CAS  Google Scholar 

  • Mayer AM, Gustafson KR (2008) Marine pharmacology in 2005–2006: antitumour and cytotoxic compounds. Eur J Cancer 44(16):2357–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed IE, Gross H, Pontius A, Kehraus S, Krick A, Kelter G, Maier A, Fiebig HH, König GM (2009) Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 11(21):5014–5017

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2016 Jun) Drugs and drug candidates from marine sources: an assessment of the current “state of play”. Planta Med 82(09/10):775–789

    Article  CAS  PubMed  Google Scholar 

  • Okada F (2002) Inflammation and free radicals in tumor development and progression. Redox Rep 7(6):357–368

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Ishimaru A, Suzuki R, Okuyama T (2004) A new phloroglucinol derivative from the brown alga Eisenia bicyclis: potential for the effective treatment of diabetic complications. J Nat Prod 67(1):103–105

    Article  CAS  PubMed  Google Scholar 

  • Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P, Le Roch K (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 3(6):e2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raveh A, Delekta PC, Dobry CJ, Peng W, Schultz PJ, Blakely PK, Tai AW, Matainaho T, Irani DN, Sherman DH, Miller DJ (2013) Discovery of potent broad spectrum antivirals derived from marine actinobacteria. PLoS One 8(12):e82318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupp H (2009) Omacor®(prescription omega-3-acid ethyl esters 90): from severe rhythm disorders to hypertriglyceridemia. Adv Ther 26(7):675

    Article  CAS  PubMed  Google Scholar 

  • Simmons TL, McPhail KL, Ortega-Barría E, Mooberry SL, Gerwick WH (2006) Belamide a, a new antimitotic tetrapeptide from a Panamanian marine cyanobacterium. Tetrahedron Lett 47(20):3387–3390

    Article  CAS  Google Scholar 

  • Socha AM, LaPlante KL, Rowley DC (2006) New bisanthraquinone antibiotics and semi-synthetic derivatives with potent activity against clinical Staphylococcus aureus and Enterococcus faecium isolates. Bioorg Med Chem 14(24):8446–8454

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Dou H, Gong W, Liu X, Yu Z, Li E, Tan R, Hou Y (2013) Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur J Pharmacol 705(1–3):49–60

    Article  CAS  PubMed  Google Scholar 

  • Strand M, Carlsson M, Uvell H, Islam K, Edlund K, Cullman I, Altermark B, Mei YF, Elofsson M, Willassen NP, Wadell G (2014) Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria. Mar Drugs 12(2):799–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas NV, Kim SK (2011) Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ Toxicol Pharmacol 32(3):325–335

    Article  CAS  PubMed  Google Scholar 

  • Varoglu M, Crews P (2000) Biosynthetically diverse compounds from a saltwater culture of sponge-derived Aspergillus niger. J Nat Prod 63(1):41–43

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhao B, Zhang W, Wu X, Wang R, Huang Y, Chen D, Park K, Weimer BC, Shen Y (2010) Mycoepoxydiene, a fungal polyketide, induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells. Bioorg Med Chem Lett 20(23):7054–7058

    Article  CAS  PubMed  Google Scholar 

  • Weyland H (1969) Actinomycetes in North Sea and Atlantic Ocean sediments. Nature 223(5208):858

    Article  CAS  PubMed  Google Scholar 

  • Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol 203(3):201–218

    Article  CAS  PubMed  Google Scholar 

  • Williams JA, Day M, Heavner JE (2008) Ziconotide: an update and review. Expert Opin Pharmacother 9(9):1575–1583

    Article  CAS  PubMed  Google Scholar 

  • Winston JE (1992) Systematics and marine conservation. In: Systematics, ecology, and the biodiversity crisis, vol 10. Columbia University Press, New York, p 144

    Google Scholar 

  • Yang H, Zeng M, Dong S, Liu Z, Li R (2010) Anti-proliferative activity of phlorotannin extracts from brown algae Laminaria japonica Aresch. Chin J Oceanol Limnol 28(1):122–130

    Article  CAS  Google Scholar 

  • Yang XW, Peng K, Liu Z, Zhang GY, Li J, Wang N, Steinmetz A, Liu Y (2013) Strepsesquitriol, a rearranged zizaane-type sesquiterpenoid from the deep-sea-derived actinomycete Streptomyces sp. SCSIO 10355. J Nat Prod 76(12):2360–2363

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Anjum K, Song T, Wang W, Yu S, Huang H, Lian XY, Zhang Z (2016) A new curvularin glycoside and its cytotoxic and antibacterial analogues from marine actinomycete Pseudonocardia sp. HS7. Nat Prod Res 30(10):1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Yuan YV, Walsh NA (2006) Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 44(7):1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Tao LY, Liang YJ, Chen LM, Mi YJ, Zheng LS, Wang F, She ZG, Lin YC, To KK, Fu LW (2010) Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs 8(4):1469–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Miao L, Lv C, Sun H, Wei S, Wang B, Huang C, Jiao B (2013) Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis 4(6):e657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Vice Chancellor, Central University of Punjab, for his administrative help for the execution of this report. Priyanka Singh, Khem Chand Saini, and Villayat Ali gratefully acknowledge CSIR, New Delhi, India, for the award of fellowship toward Ph.D.

Conflict of Interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Saini, K.C., Ali, V., Gupta, S.K., Verma, M. (2020). Small in Size, Big in Impact: Marine Microbes, a Boon for Biotherapeutics. In: Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B., Joshi, C.G. (eds) Marine Niche: Applications in Pharmaceutical Sciences . Springer, Singapore. https://doi.org/10.1007/978-981-15-5017-1_4

Download citation

Publish with us

Policies and ethics