Skip to main content

MicroRNA-Targeted Therapeutics for Ischemic Stroke: Status, Gaps and the Way Forward

  • Chapter
  • First Online:
IschemiRs: MicroRNAs in Ischemic Stroke

Abstract

Post-stroke miRNA modulation is anticipated to revolutionize ischemic stroke therapeutic landscape despite the challenges and the future efforts necessary for the successful translation of preclinical observations to clinical practice. This chapter summarizes the currently employed strategies for the restoration or inhibition of microRNA (miRNA) function and the methods used for the delivery of miRNAs. The rising interest in the use of pharmacological agents and small-molecules to regulate miRNA expression, with special emphasis on ischemic stroke, has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110:496–507

    Article  CAS  PubMed  Google Scholar 

  2. van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bader AG, Brown D, Stoudemire J, Lammers P (2011) Developing therapeutic microRNAs for cancer. Gene Ther 18:1121–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thorsen SB, Obad S, Jensen NF, Stenvang J, Kauppinen S (2012) The therapeutic potential of microRNAs in cancer. Cancer J 18:275–284

    Article  CAS  PubMed  Google Scholar 

  7. Chen PY, Weinmann L, Gaidatzis D, Pei Y, Zavolan M, Tuschl T, Meister G (2008) Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14:263–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Z (2011) The guideline of the design and validation of MiRNA mimics. Methods Mol Biol 676:211–223

    Article  CAS  PubMed  Google Scholar 

  10. Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H et al (2016) MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol 53:6809–6817

    Article  CAS  PubMed  Google Scholar 

  11. Nampoothiri SS, Rajanikant GK (2019) miR-9 upregulation integrates post-ischemic neuronal survival and regeneration in vitro. Cell Mol Neurobiol 39:223–240

    Article  CAS  PubMed  Google Scholar 

  12. Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H et al (2011) MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through notch signaling pathway. PLoS One 6:e23461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T et al (2013) MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem 288:12478–12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu da Z, Jickling GC, Ander BP, Hull H, Zhan X, Cox C et al (2016) Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 36:1374–1383

    Article  PubMed  CAS  Google Scholar 

  15. Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A et al (2010) MicroRNA-21 protects neurons from ischemic death. FEBS J 277:4299–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng LL, He XS, Liu JR, Zheng CB, Wang YT, Yang GY (2016) Lentivirus-mediated overexpression of microRNA-210 improves long-term outcomes after focal cerebral ischemia in mice. CNS Neurosci Ther 22:961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al (2010) Regression of murine lung tumors by the let-7 microRNA. Oncogene 29:1580–1587

    Article  CAS  PubMed  Google Scholar 

  19. Miyazaki Y, Adachi H, Katsuno M, Minamiyama M, Jiang Y-M, Huang Z et al (2012) Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat Med 18:1136–1141

    Article  CAS  PubMed  Google Scholar 

  20. Hutvagner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specifi c inhibition of small RNA function. PLoS Biol 2:E98

    Article  PubMed  PubMed Central  Google Scholar 

  21. Michlewski G, Guil S, Semple CA, Cáceres JF (2008) Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 32:383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidt MF (2014) Drug target miRNA:chances and challenges. Trends Biotechnol 32:578–585

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638

    Article  CAS  PubMed  Google Scholar 

  24. Meister G, Landthaler M, Dorsett Y, Tuschl T (2004) Sequence-specifi c inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10:544–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5:381–391

    Article  CAS  PubMed  Google Scholar 

  26. Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18:1111–1120

    Article  CAS  PubMed  Google Scholar 

  27. Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44:55–60

    Article  CAS  PubMed  Google Scholar 

  28. Kumar R, Singh SK, Koshkin AA, Rajwanshi VK, Meldgaard M, Wengel J (1998) The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett 8:2219–2222

    Article  CAS  PubMed  Google Scholar 

  29. Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Kurreck J, Wyszko E, Gillen C, Erdmann VA (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30:1911–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hinkel R, Penzkofer D, Zühlke S, Fischer A, Husada W, Xu QF et al (2013) Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128:1066–1075

    Article  CAS  PubMed  Google Scholar 

  32. Ma Q, Dasgupta C, Li Y, Bajwa NM, Xiong F, Harding B et al (2016) Inhibition of microRNA-210 provides neuroprotection in hypoxic-ischemic brain injury in neonatal rats. Neurobiol Dis 89:202–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  34. Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R et al (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci 38:32–50

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen S, Wang M, Yang H, Mao L, He Q, Jin H et al (2017) LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem Biophys Res Commun 485:167–173

    Article  CAS  PubMed  Google Scholar 

  36. Nayerossadat N, Maedeh T, Ali PA (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bushman FD (2007) Retroviral integration and human gene therapy. J Clin Invest 117:2083–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Escors D, Breckpot K (2010) Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp 58:107–119

    Article  CAS  Google Scholar 

  39. Azzouz M, Kingsman SM, Mazarakis ND (2004) Lentiviral vectors for treating and modeling human CNS disorders. J Gene Med 6:951–962

    Article  CAS  PubMed  Google Scholar 

  40. Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z et al (2013) MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44:1706–1713

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Mao L, Gao Y, Baral S, Zhou Y, Hu B (2015) MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci Rep 5:13316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chi W, Meng F, Li Y, Wang Q, Wang G, Han S et al (2014) Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B. Neuroscience 277:111–122

    Article  CAS  PubMed  Google Scholar 

  43. Åkerblom M, Sachdeva R, Barde I, Verp S, Gentner B, Trono D et al (2012) MicroRNA-124 is a subventricular zone neuronal fate determinant. J Neurosci 32:8879–8889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Khanna S, Rink C, Ghoorkhanian R, Gnyawali S, Heigel M, Wijesinghe DS et al (2013) Loss of miR-29b following acute ischemic stroke contributes to neural cell death and infarct size. J Cereb Blood Flow Metab 33:1197–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Wang Z, Gemeinhart RA (2013) Progress in microRNA delivery. J Control Release 172:962–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Du X, Wang J, Zhou Q, Zhang Z, Wang S, Zhang Z et al (2018) Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv 25:1516–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y (2015) Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev 81:142–160

    Article  CAS  PubMed  Google Scholar 

  48. Al-Dosari MS, Gao X (2009) Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 11:671–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balazs DA, Godbey W (2011) Liposomes for use in gene delivery. J Drug Deliv 2011:326497

    Article  CAS  PubMed  Google Scholar 

  50. Merhautová J, Vychytilová-Faltejsková P, Demlová R, Slabý O (2016) Systemic administration of miRNA mimics by liposomal delivery system in animal model of colorectal carcinoma. Physiol Res 65:S481–S488

    Article  PubMed  Google Scholar 

  51. Ham O, Lee SY, Lee CY, Park JH, Lee J, Seo HH et al (2015) let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3. Stem Cell Res Ther 6:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wang X, Chen S, Ni J, Cheng J, Jia J, Zhen X (2018) miRNA-3473b contributes to neuroinflammation following cerebral ischemia. Cell Death Dis 9:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB et al (2012) MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 135:1237–1252

    Article  PubMed  Google Scholar 

  54. Sluijter JP, van Mil A, van Vliet P, Metz CH, Liu J, Doevendans PA et al (2010) MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30:859–868

    Article  CAS  PubMed  Google Scholar 

  55. Singha K, Namgung R, Kim WJ (2011) Polymers in small-interfering RNA delivery. Nucleic Acid Ther 21:133–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saraiva C, Talhada D, Rai A, Ferreira R, Ferreira L, Bernardino L et al (2018) MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS One 13:e0193609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Choi JS, Nam K, Park JY, Kim JB, Lee JK, Park JS (2004) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release 99:445–456

    Article  CAS  PubMed  Google Scholar 

  58. Kim JB, Choi JS, Nam K, Lee M, Park JS, Lee JK (2006) Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J Control Release 114:110–117

    Article  CAS  PubMed  Google Scholar 

  59. Kim ID, Shin JH, Kim SW, Choi S, Ahn J, Han PL et al (2012) Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther 20:829–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gagat M, Zielińska W, Grzanka A (2017) Cell-penetrating peptides and their utility in genome function modifications (review). Int J Mol Med 40:1615–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ohno S, Kuroda M (2016) Exosome-mediated targeted delivery of miRNAs. Methods Mol Biol 1448:261–270

    Article  CAS  PubMed  Google Scholar 

  62. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  63. Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256

    Article  CAS  PubMed  Google Scholar 

  64. Yang J, Zhang X, Chen X, Wang L, Yang G (2017) Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 7:278–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xin H, Li Y, Chopp M (2014) Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 8:377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wen Y, Zhang X, Dong L, Zhao J, Zhang C, Zhu C (2015) Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol Med 21:197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang L, Chopp M, Liu X, Teng H, Tang T, Kassis H et al (2012) Combination therapy with VELCADE and tissue plasminogen activator is neuroprotective in aged rats after stroke and targets microRNA-146a and the toll-like receptor signaling pathway. Arterioscler Thromb Vasc Biol 32:1856–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dong YF, Chen ZZ, Zhao Z, Yang DD, Yan H, Ji J et al (2016) Potential role of microRNA-7 in the anti-neuroinflammation effects of nicorandil in astrocytes induced by oxygen-glucose deprivation. J Neuroinflammation 13:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Connelly CM, Thomas M, Deiters A (2012) High-throughput luciferase reporter assay for small-molecule inhibitors of microRNA function. J Biomol Screen 17:822–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bernstock JD, Lee YJ, Peruzzotti-Jametti L, Southall N, Johnson KR, Maric D et al (2016) A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation. J Cereb Blood Flow Metab 36:426–441

    Article  CAS  PubMed  Google Scholar 

  71. Hamzei Taj S, Kho W, Riou A et al (2016) MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 91:151–165

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajanikant G. K. .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

G. K., R., Gressens, P., Nampoothiri, S.S., Surendran, G., Bokobza, C. (2020). MicroRNA-Targeted Therapeutics for Ischemic Stroke: Status, Gaps and the Way Forward. In: IschemiRs: MicroRNAs in Ischemic Stroke. Springer, Singapore. https://doi.org/10.1007/978-981-15-4798-0_11

Download citation

Publish with us

Policies and ethics