Skip to main content

Advertisement

Log in

Lentiviral Vectors in Gene Therapy: Their Current Status and Future Potential

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

The concept of gene therapy originated in the mid twentieth century and was perceived as a revolutionary technology with the promise to cure almost any disease of which the molecular basis was understood. Since then, several gene vectors have been developed and the feasibility of gene therapy has been shown in many animal models of human disease. However, clinical efficacy could not be demonstrated until the beginning of the new century in a small-scale clinical trial curing an otherwise fatal immunodeficiency disorder in children. This first success, achieved after retroviral therapy, was later overshadowed by the occurrence of vector-related leukemia in a significant number of the treated children, demonstrating that the future success of gene therapy depends on our understanding of vector biology. This has led to the development of later-generation vectors with improved efficiency, specificity, and safety. Amongst these are HIV-1 lentivirus-based vectors (lentivectors), which are being increasingly used in basic and applied research. Human gene therapy clinical trials are currently underway using lentivectors in a wide range of human diseases. The intention of this review is to describe the main scientific steps leading to the engineering of HIV-1 lentiviral vectors and place them in the context of current human gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DC:

Dendritic cell

ds:

Double-stranded

env:

Envelope-encoding gene

gag:

Gene encoding structural proteins

pol:

Gene encoding viral enzymes

HIV:

Human immunodeficiency virus

LTR:

Long terminal repeat

MMP:

Metalloproteinase

MLV:

Murine leukemia virus

NILV:

Non-integrating lentivector

PPT:

Polypurine tract

PSA:

Prostate-specific antigen

SCID:

Severe combined immunodeficiency

ss:

Single-stranded

TCR:

T-cell receptor

VSV G:

Vesicular stomatitis virus glycoprotein

References

  • (1976) Editorial: gene cloning: one milestone on a very long road. Lancet 1:893

  • (1981) Gene therapy: how ripe the time? Lancet 1:196–197

  • Akazawa T, Ebihara T, Okuno M et al (2007a) Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc Natl Acad Sci USA 104:252–257

    CAS  PubMed  Google Scholar 

  • Akazawa T, Shingai M, Sasai M et al (2007b) Tumor immunotherapy using bone marrow-derived dendritic cells overexpressing Toll-like receptor adaptors. FEBS Lett 581:3334–3340

    CAS  PubMed  Google Scholar 

  • Anderson WF, Blaese RM, Culver K (1990) The ADA human gene therapy clinical protocol: points to consider response with clinical protocol, July 6, 1990. Hum Gene Ther 1:331–362

    PubMed  Google Scholar 

  • Andreadis ST, Brott D, Fuller AO et al (1997) Moloney murine leukemia virus-derived retroviral vectors decay intracellularly with a half-life in the range of 5.5 to 7.5 hours. J Virol 71:7541–7548

    CAS  PubMed  Google Scholar 

  • Apolonia L, Waddington SN, Fernandes C et al (2007) Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol Ther 15:1947–1954

    CAS  PubMed  Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1979) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 149:297–326

    CAS  PubMed  Google Scholar 

  • Biffi A, Naldini L (2007) Novel candidate disease for gene therapy: metachromatic leukodystrophy. Expert Opin Biol Ther 7:1193–1205

    CAS  PubMed  Google Scholar 

  • Blaese RM, Culver KW, Chang L et al (1993) Treatment of severe combined immunodeficiency disease (SCID) due to adenosine deaminase deficiency with CD34+ selected autologous peripheral blood cells transduced with a human ADA gene. Amendment to clinical research project, Project 90-C-195, January 10, 1992. Hum Gene Ther 4:521–527

    CAS  PubMed  Google Scholar 

  • Blomer U, Naldini L, Kafri T et al (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71:6641–6649

    CAS  PubMed  Google Scholar 

  • Bokhoven M, Stephen SL, Knight S et al (2009) Insertional gene activation by lentiviral and gammaretroviral vectors. J Virol 83:283–294

    CAS  PubMed  Google Scholar 

  • Bouard D, Alazard-Dany D, Cosset FL (2009) Viral vectors: from virology to transgene expression. Br J Pharmacol 157:153–165

    CAS  PubMed  Google Scholar 

  • Breckpot K, Escors D (2009) Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification. Endocr Metab Immune Disord Drug Targets 9:328–343

    CAS  PubMed  Google Scholar 

  • Breckpot K, Dullaers M, Bonehill A et al (2003) Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 5:654–667

    CAS  PubMed  Google Scholar 

  • Breckpot K, Corthals J, Heirman C et al (2004) Activation of monocytes via the CD14 receptor leads to the enhanced lentiviral transduction of immature dendritic cells. Hum Gene Ther 15:562–573

    CAS  PubMed  Google Scholar 

  • Breckpot K, Aerts JL, Thielemans K (2007a) Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther 14:847–862

    CAS  PubMed  Google Scholar 

  • Breckpot K, Emeagi P, Dullaers M et al (2007b) Activation of immature monocyte-derived dendritic cells after transduction with high doses of lentiviral vectors. Hum Gene Ther 18:536–546

    CAS  PubMed  Google Scholar 

  • Breckpot K, Emeagi PU, Thielemans K (2008) Lentiviral vectors for anti-tumor immunotherapy. Curr Gene Ther 8:438–448

    CAS  PubMed  Google Scholar 

  • Brenner MK, Rill DR, Holladay MS et al (1993) Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 342:1134–1137

    CAS  PubMed  Google Scholar 

  • Brown BD, Cantore A, Annoni A et al (2007a) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110:4144–4152

    CAS  PubMed  Google Scholar 

  • Brown BD, Gentner B, Cantore A et al (2007b) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25:1457–1467

    CAS  PubMed  Google Scholar 

  • Brown BD, Sitia G, Annoni A et al (2007c) In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood 109:2797–2805

    CAS  PubMed  Google Scholar 

  • Bukrinsky MI, Haggerty S, Dempsey MP et al (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365:666–669

    CAS  PubMed  Google Scholar 

  • Burns JC, Friedmann T, Driever W et al (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90:8033–8037

    CAS  PubMed  Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    CAS  PubMed  Google Scholar 

  • Charneau P, Alizon M, Clavel F (1992) A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J Virol 66:2814–2820

    CAS  PubMed  Google Scholar 

  • Cline MJ (1985) Perspectives for gene therapy: inserting new genetic information into mammalian cells by physical techniques and viral vectors. Pharmacol Ther 29:69–92

    CAS  PubMed  Google Scholar 

  • Coil DA, Miller AD (2004) Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J Virol 78:10920–10926

    CAS  PubMed  Google Scholar 

  • Cornu TI, Cathomen T (2007) Targeted genome modifications using integrase-deficient lentiviral vectors. Mol Ther 15:2107–2113

    CAS  PubMed  Google Scholar 

  • Costantini LC, Bakowska JC, Breakefield XO et al (2000) Gene therapy in the CNS. Gene Ther 7:93–109

    CAS  PubMed  Google Scholar 

  • Cui Y, Golob J, Kelleher E et al (2002) Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood 99:399–408

    CAS  PubMed  Google Scholar 

  • De Palma M, Venneri MA, Naldini L (2003) In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 14:1193–1206

    PubMed  Google Scholar 

  • Deisseroth AB, Zu Z, Claxton D et al (1994) Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 83:3068–3076

    CAS  PubMed  Google Scholar 

  • Duerner LJ, Schwantes A, Schneider IC et al (2008) Cell entry targeting restricts biodistribution of replication-competent retroviruses to tumour tissue. Gene Ther 15:1500–1510

    CAS  PubMed  Google Scholar 

  • Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed  Google Scholar 

  • Dullaers M, Van Meirvenne S, Heirman C et al (2006) Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther 13:630–640

    CAS  PubMed  Google Scholar 

  • Dunbar CE, Cottler-Fox M, O’Shaughnessy JA et al (1995) Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 85:3048–3057

    CAS  PubMed  Google Scholar 

  • Escors D, Lopes L, Lin R et al (2008) Targeting dendritic cell signaling to regulate the response to immunization. Blood 111:3050–3061

    CAS  PubMed  Google Scholar 

  • Falk R (1984) The gene in search of an identity. Hum Genet 68:195–204

    CAS  PubMed  Google Scholar 

  • Farson D, Witt R, McGuinness R et al (2001) A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 12:981–997

    CAS  PubMed  Google Scholar 

  • Friedmann T (1976) The future for gene therapy—a reevaluation. Ann NY Acad Sci 265:141–152

    CAS  PubMed  Google Scholar 

  • Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175:949–955

    CAS  PubMed  Google Scholar 

  • Funke S, Maisner A, Muhlebach MD et al (2008) Targeted cell entry of lentiviral vectors. Mol Ther 16:1427–1436

    CAS  PubMed  Google Scholar 

  • Galimi F, Saez E, Gall J et al (2005) Development of ecdysone-regulated lentiviral vectors. Mol Ther 11:142–148

    CAS  PubMed  Google Scholar 

  • Gascon S, Paez-Gomez JA, Diaz-Guerra M et al (2008) Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons. J Neurosci Methods 168:104–112

    CAS  PubMed  Google Scholar 

  • Gaspar HB, Parsley KL, Howe S et al (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364:2181–2187

    CAS  PubMed  Google Scholar 

  • Georgievska B, Jakobsson J, Persson E et al (2004) Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum Gene Ther 15:934–944

    CAS  PubMed  Google Scholar 

  • Ginn SL, Fleming J, Rowe PB et al (2003) Promoter interference mediated by the U3 region in early-generation HIV-1-derived lentivirus vectors can influence detection of transgene expression in a cell-type and species-specific manner. Hum Gene Ther 14:1127–1137

    CAS  PubMed  Google Scholar 

  • Gottlieb MS (2006) Pneumocystis pneumonia—Los Angeles. 1981. Am J Public Health 96:980–981; discussion 982–983

  • Greenberg KP, Geller SF, Schaffer DV et al (2007) Targeted transgene expression in muller glia of normal and diseased retinas using lentiviral vectors. Invest Ophthalmol Vis Sci 48:1844–1852

    PubMed  Google Scholar 

  • Gruber A, Kan-Mitchell J, Kuhen KL et al (2000) Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 96:1327–1333

    CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    CAS  PubMed  Google Scholar 

  • Hamer DH, Smith KD, Boyer SH et al (1979) SV40 recombinants carrying rabbit beta-globin gene coding sequences. Cell 17:725–735

    CAS  PubMed  Google Scholar 

  • Hatziioannou T, Delahaye E, Martin F et al (1999) Retroviral display of functional binding domains fused to the amino terminus of influenza hemagglutinin. Hum Gene Ther 10:1533–1544

    CAS  PubMed  Google Scholar 

  • Heinzinger NK, Bukinsky MI, Haggerty SA et al (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 91:7311–7315

    CAS  PubMed  Google Scholar 

  • Hematti P, Hong BK, Ferguson C et al (2004) Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2:e423

    PubMed  Google Scholar 

  • Howe SJ, Mansour MR, Schwarzwaelder K et al (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118:3143–3150

    CAS  PubMed  Google Scholar 

  • Jacome A, Navarro S, Rio P et al (2009) Lentiviral-mediated genetic correction of hematopoietic and mesenchymal progenitor cells from Fanconi anemia patients. Mol Ther 17:1083–1092

    CAS  PubMed  Google Scholar 

  • Johansen J, Rosenblad C, Andsberg K et al (2002) Evaluation of Tet-on system to avoid transgene down-regulation in ex vivo gene transfer to the CNS. Gene Ther 9:1291–1301

    CAS  PubMed  Google Scholar 

  • Jones IM, Morikawa Y (1998) The molecular basis of HIV capsid assembly. Rev Med Virol 8:87–95

    CAS  PubMed  Google Scholar 

  • Karwacz K, Mukherjee S, Apolonia L et al (2009) Nonintegrating lentivector vaccines stimulate prolonged T-cell and antibody responses and are effective in tumor therapy. J Virol 83:3094–3103

    CAS  PubMed  Google Scholar 

  • Katz RA, Skalka AM (1994) The retroviral enzymes. Annu Rev Biochem 63:133–173

    CAS  PubMed  Google Scholar 

  • Keeler CE (1947) Gene therapy. J Hered 38:294–298

    CAS  PubMed  Google Scholar 

  • Korin YD, Zack JA (1998) Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J Virol 72:3161–3168

    CAS  PubMed  Google Scholar 

  • Koya RC, Kasahara N, Favaro PM et al (2003) Potent maturation of monocyte-derived dendritic cells after CD40L lentiviral gene delivery. J Immunother 26:451–460

    CAS  PubMed  Google Scholar 

  • Kuroda H, Kutner RH, Bazan NG et al (2008) A comparative analysis of constitutive and cell-specific promoters in the adult mouse hippocampus using lentivirus vector-mediated gene transfer. J Gene Med 10:1163–1175

    CAS  PubMed  Google Scholar 

  • Lai Z, Brady RO (2002) Gene transfer into the central nervous system in vivo using a recombinant lentivirus vector. J Neurosci Res 67:363–371

    CAS  PubMed  Google Scholar 

  • Le Doux JM, Davis HE, Morgan JR et al (1999) Kinetics of retrovirus production and decay. Biotechnol Bioeng 63:654–662

    CAS  PubMed  Google Scholar 

  • Levine F, Friedmann T (1991) Gene therapy techniques. Curr Opin Biotechnol 2:840–844

    CAS  PubMed  Google Scholar 

  • Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68:510–516

    CAS  PubMed  Google Scholar 

  • Liu BH, Wang X, Ma YX et al (2004) CMV enhancer/human PDGF-beta promoter for neuron-specific transgene expression. Gene Ther 11:52–60

    PubMed  Google Scholar 

  • Liu B, Paton JF, Kasparov S (2008) Viral vectors based on bidirectional cell-specific mammalian promoters and transcriptional amplification strategy for use in vitro and in vivo. BMC Biotechnol 8:49

    PubMed  Google Scholar 

  • Lombardo A, Genovese P, Beausejour CM et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306

    CAS  PubMed  Google Scholar 

  • Lopes L, Dewannieux M, Gileadi U et al (2008) Immunization with a lentivector that targets tumor antigen expression to dendritic cells induces potent CD8+ and CD4+ T-cell responses. J Virol 82:86–95

    CAS  PubMed  Google Scholar 

  • Manilla P, Rebello T, Afable C et al (2005) Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 16:17–25

    CAS  PubMed  Google Scholar 

  • Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–159

    CAS  PubMed  Google Scholar 

  • Mantei N, Boll W, Weissmann C (1979) Rabbit beta-globin mRNA production in mouse L cells transformed with cloned rabbit beta-globin chromosomal DNA. Nature 281:40–46

    CAS  PubMed  Google Scholar 

  • Mantovani J, Charrier S, Eckenberg R et al (2009) Diverse genomic integration of a lentiviral vector developed for the treatment of Wiskott-Aldrich syndrome. J Gene Med 11:645–654

    CAS  PubMed  Google Scholar 

  • Marangoni F, Bosticardo M, Charrier S et al (2009) Evidence for long-term efficacy and safety of gene therapy for Wiskott-Aldrich syndrome in preclinical models. Mol Ther 17:1073–1082

    CAS  PubMed  Google Scholar 

  • Menzel O, Birraux J, Wildhaber BE et al (2009) Biosafety in ex vivo gene therapy and conditional ablation of lentivirally transduced hepatocytes in nonhuman primates. Mol Ther 17:1754–1760

    CAS  PubMed  Google Scholar 

  • Mercola KE, Cline MJ (1980) Sounding boards. The potentials of inserting new genetic information. N Engl J Med 303:1297–1300

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi H, Takahashi M, Gage FH et al (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 94:10319–10323

    CAS  PubMed  Google Scholar 

  • Miyoshi H, Blomer U, Takahashi M et al (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157

    CAS  PubMed  Google Scholar 

  • Modlich U, Navarro S, Zychlinski D et al (2009) Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 17:1919–1928

    CAS  PubMed  Google Scholar 

  • Montini E, Cesana D, Schmidt M et al (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119:964–975

    CAS  PubMed  Google Scholar 

  • Moreau-Gaudry F, Xia P, Jiang G et al (2001) High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 98:2664–2672

    CAS  PubMed  Google Scholar 

  • Moreno-Carranza B, Gentsch M, Stein S et al (2009) Transgene optimization significantly improves SIN vector titers, gp91phox expression and reconstitution of superoxide production in X-CGD cells. Gene Ther 16:111–118

    CAS  PubMed  Google Scholar 

  • Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    CAS  PubMed  Google Scholar 

  • Morizono K, Xie Y, Ringpis GE et al (2005) Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med 11:346–352

    CAS  PubMed  Google Scholar 

  • Mortellaro A, Hernandez RJ, Guerrini MM et al (2006) Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)-deficient mice and corrects their immune and metabolic defects. Blood 108:2979–2988

    CAS  PubMed  Google Scholar 

  • Mulligan RC, Howard BH, Berg P (1979) Synthesis of rabbit beta-globin in cultured monkey kidney cells following infection with a SV40 beta-globin recombinant genome. Nature 277:108–114

    CAS  PubMed  Google Scholar 

  • Nagata S, Taira H, Hall A et al (1980) Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 284:316–320

    CAS  PubMed  Google Scholar 

  • Naldini L, Blomer U, Gage FH et al (1996a) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388

    CAS  PubMed  Google Scholar 

  • Naldini L, Blomer U, Gallay P et al (1996b) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    CAS  PubMed  Google Scholar 

  • Neville R (1976) Gene therapy and the ethics of genetic therapeutics. Ann NY Acad Sci 265:153–169

    CAS  PubMed  Google Scholar 

  • Ochoa S (1963) Synthetic polynucleotides and the genetic code. Proc Can Cancer Conf 5:37–64

    CAS  PubMed  Google Scholar 

  • Oertel M, Rosencrantz R, Chen YQ et al (2003) Repopulation of rat liver by fetal hepatoblasts and adult hepatocytes transduced ex vivo with lentiviral vectors. Hepatology 37:994–1005

    PubMed  Google Scholar 

  • Palu G, Parolin C, Takeuchi Y et al (2000) Progress with retroviral gene vectors. Rev Med Virol 10:185–202

    CAS  PubMed  Google Scholar 

  • Pariente N, Morizono K, Virk MS et al (2007) A novel dual-targeted lentiviral vector leads to specific transduction of prostate cancer bone metastases in vivo after systemic administration. Mol Ther 15:1973–1981

    CAS  PubMed  Google Scholar 

  • Pariente N, Mao SH, Morizono K et al (2008) Efficient targeted transduction of primary human endothelial cells with dual-targeted lentiviral vectors. J Gene Med 10:242–248

    CAS  PubMed  Google Scholar 

  • Parker DG, Brereton HM, Klebe S et al (2009) A steroid-inducible promoter for the cornea. Br J Ophthalmol 93:1255–1259

    CAS  PubMed  Google Scholar 

  • Philippe S, Sarkis C, Barkats M et al (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci USA 103:17684–17689

    CAS  PubMed  Google Scholar 

  • Rattray AJ, Champoux JJ (1989) Plus-strand priming by Moloney murine leukemia virus. The sequence features important for cleavage by RNase H. J Mol Biol 208:445–456

    CAS  PubMed  Google Scholar 

  • Reiser J, Lai Z, Zhang X et al (2000) Development of multigene and regulated lentivirus vectors. J Virol 74:10589–10599

    CAS  PubMed  Google Scholar 

  • Rill DR, Santana VM, Roberts WM et al (1994) Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 84:380–383

    CAS  PubMed  Google Scholar 

  • Rowe HM, Lopes L, Brown N et al (2009) Expression of vFLIP in a lentiviral vaccine vector activates NF-kappaB, matures dendritic cells, and increases CD8+ T-cell responses. J Virol 83:1555–1562

    CAS  PubMed  Google Scholar 

  • Ryser MF, Roesler J, Gentsch M et al (2007) Gene therapy for chronic granulomatous disease. Expert Opin Biol Ther 7:1799–1809

    CAS  PubMed  Google Scholar 

  • Saez E, Nelson MC, Eshelman B et al (2000) Identification of ligands and coligands for the ecdysone-regulated gene switch. Proc Natl Acad Sci USA 97:14512–14517

    CAS  PubMed  Google Scholar 

  • Semple-Rowland SL, Eccles KS, Humberstone EJ (2007) Targeted expression of two proteins in neural retina using self-inactivating, insulated lentiviral vectors carrying two internal independent promoters. Mol Vis 13:2001–2011

    CAS  PubMed  Google Scholar 

  • Seo E, Kim S, Jho EH (2009) Induction of cancer cell-specific death via MMP2 promoter dependent Bax expression. BMB Rep 42:217–222

    CAS  PubMed  Google Scholar 

  • Sirin O, Park F (2003) Regulating gene expression using self-inactivating lentiviral vectors containing the mifepristone-inducible system. Gene 323:67–77

    CAS  PubMed  Google Scholar 

  • Sirven A, Pflumio F, Zennou V et al (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96:4103–4110

    CAS  PubMed  Google Scholar 

  • Song XT, Evel-Kabler K, Shen L et al (2008) A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat Med 14:258–265

    CAS  PubMed  Google Scholar 

  • Springfeld C, von Messling V, Frenzke M et al (2006) Oncolytic efficacy and enhanced safety of measles virus activated by tumor-secreted matrix metalloproteinases. Cancer Res 66:7694–7700

    CAS  PubMed  Google Scholar 

  • Szecsi J, Drury R, Josserand V et al (2006) Targeted retroviral vectors displaying a cleavage site-engineered hemagglutinin (HA) through HA-protease interactions. Mol Ther 14:735–744

    CAS  PubMed  Google Scholar 

  • Szulc J, Wiznerowicz M, Sauvain MO et al (2006) A versatile tool for conditional gene expression and knockdown. Nat Methods 3:109–116

    CAS  PubMed  Google Scholar 

  • Tan PH, Beutelspacher SC, Xue SA et al (2005) Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood 105:3824–3832

    CAS  PubMed  Google Scholar 

  • Terheggen HG, Lowenthal A, Lavinha F et al (1975) Unsuccessful trial of gene replacement in arginase deficiency. Z Kinderheilkd 119:1–3

    CAS  PubMed  Google Scholar 

  • Themis M, Waddington SN, Schmidt M et al (2005) Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 12:763–771

    CAS  PubMed  Google Scholar 

  • Throm RE, Ouma AA, Zhou S et al (2009) Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood 113:5104–5110

    CAS  PubMed  Google Scholar 

  • Uch R, Gerolami R, Faivre J et al (2003) Hepatoma cell-specific ganciclovir-mediated toxicity of a lentivirally transduced HSV-TkEGFP fusion protein gene placed under the control of rat alpha-fetoprotein gene regulatory sequences. Cancer Gene Ther 10:689–695

    CAS  PubMed  Google Scholar 

  • VandenDriessche T, Thorrez L, Naldini L et al (2002) Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 100:813–822

    CAS  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  PubMed  Google Scholar 

  • Vigna E, Cavalieri S, Ailles L et al (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 5:252–261

    CAS  PubMed  Google Scholar 

  • Vogt VM, Simon MN (1999) Mass determination of rous sarcoma virus virions by scanning transmission electron microscopy. J Virol 73:7050–7055

    CAS  PubMed  Google Scholar 

  • Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8:573–587

    CAS  PubMed  Google Scholar 

  • Watanabe S, Temin HM (1982) Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5′ long terminal repeat and the start of the gag gene. Proc Natl Acad Sci USA 79:5986–5990

    CAS  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953a) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    CAS  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953b) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    CAS  PubMed  Google Scholar 

  • Weiling F (1991) Historical study: Johann Gregor Mendel 1822–1884. Am J Med Genet 40:1–25; discussion 26

    Google Scholar 

  • Williamson B (1982) Gene therapy. Nature 298:416–418

    CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    CAS  PubMed  Google Scholar 

  • Xu Y, Darcy PK, Kershaw MH (2007) Tumor-specific dendritic cells generated by genetic redirection of Toll-like receptor signaling against the tumor-associated antigen, erbB2. Cancer Gene Ther 14:773–780

    CAS  PubMed  Google Scholar 

  • Yanez-Munoz RJ, Balaggan KS, MacNeil A et al (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12:348–353

    CAS  PubMed  Google Scholar 

  • Yu D, Chen D, Chiu C et al (2001) Prostate-specific targeting using PSA promoter-based lentiviral vectors. Cancer Gene Ther 8:628–635

    CAS  PubMed  Google Scholar 

  • Zhang J, Zou L, Liu Q et al (2009) Rapid generation of dendritic cell specific transgenic mice by lentiviral vectors. Transgenic Res 18:921–931

    CAS  PubMed  Google Scholar 

  • Zhao H, Pestina TI, Nasimuzzaman M et al (2009) Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene. Blood 113:5747–5756

    CAS  PubMed  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ et al (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    CAS  PubMed  Google Scholar 

  • Zufferey R, Dull T, Mandel RJ et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    CAS  PubMed  Google Scholar 

  • Zufferey R, Donello JE, Trono D et al (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Karine Breckpot is funded by the Fund for Scientific Research-Flanders (FWO-Vlaanderen). David Escors is funded by an Arthritis Research Campaign Career Development Fellowship. We would also like to acknowledge all research groups working in gene therapy that have not been cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Escors.

About this article

Cite this article

Escors, D., Breckpot, K. Lentiviral Vectors in Gene Therapy: Their Current Status and Future Potential. Arch. Immunol. Ther. Exp. 58, 107–119 (2010). https://doi.org/10.1007/s00005-010-0063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-010-0063-4

Keywords

Navigation