Skip to main content

Health Effects of Environmental Pollutants

  • Chapter
  • First Online:
Gut Remediation of Environmental Pollutants

Abstract

Environmental pollutants have been present throughout human history. However, besides the conventional pollutants such as biological toxins and heavy metals, newly synthesized chemicals are increasingly becoming part of our environment. Often, the risks to humans and the environment are studied long after they are commercialized. Examples of such chemicals are pesticides and antibiotics. In the future, as technology advances, even more complicated risks are anticipated with novel substances such as nanomaterials. It is not possible to describe all the pollutants and toxins currently in place. Instead, we would like to focus on some of the most important chemicals and concisely summarize their properties and documented and suspected risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    CAS  Google Scholar 

  2. Bernhoft RA (2013) Sci World J 2013:394652

    Google Scholar 

  3. Bernard A (2008) Indian J Med Res 128(4):557–564. Cadmium & its adverse effects on human health

    Google Scholar 

  4. The main use of arsenic is in alloying with lead. Lead components in car batteries are strengthened by the presence of a very small percentage of arsenic

    Google Scholar 

  5. Bagshaw NE (1995) Lead alloys: past, present and future. J Power Sources 53(1):25–30. Bibcode:1995JPS....53...25B. https://doi.org/10.1016/0378-7753(94)01973-Y

  6. Barceloux DG, Barceloux D (1999) Chromium. Clin Toxicol 37(2):173–194. https://doi.org/10.1081/CLT-100102418. PMID 10382554

    Article  CAS  Google Scholar 

  7. Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128:412–425

    CAS  PubMed  Google Scholar 

  8. Das KK, Buchner V (2007) Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev Environ Health 22:133–149

    Google Scholar 

  9. IARC (International Agency for Research on Cancer) (1990) IARC Monograph on the evaluation of carcinogenic risks to humans, vol 49. IARC, Lyans, pp 318–411

    Google Scholar 

  10. “Mercury” (2016) NIEHS. Archived from the original on 19 November. Retrieved 19 Nov 2016

    Google Scholar 

  11. The Karen Wetterhahn story Archived 2012-05-30 at the Wayback Machine—University of Bristol web page documenting her death. Retrieved 9 Dec 2006

    Google Scholar 

  12. OSHA update following Karen Wetterhahn’s death Archived 2015-07-11 at the Wayback Machine

    Google Scholar 

  13. “Lead poisoning and health”. WHO. September 2016. Archived from the original on 18 October 2016. Retrieved 14 Oct 2016

    Google Scholar 

  14. “Aluminum and dementia: Is there a link?”. Alzheimer Society Canada. 24 August 2018

    Google Scholar 

  15. Dolara P (2014) Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver). Int J Food Sci Nutr 65(8):911–924

    CAS  PubMed  Google Scholar 

  16. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227

    CAS  PubMed  Google Scholar 

  17. Johnson AR, Munoz A, Gottlieb JL, Jarrard DF (2007) High dose zinc increases hospital admissions due to genitourinary complications. J Urol 177(2):639–643

    CAS  PubMed  Google Scholar 

  18. Towards a Thematic Strategy for Soil protection. COM (2002)179 final. Brussels, Belgium: European Commission

    Google Scholar 

  19. Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 1(8–9):708–717

    CAS  PubMed  Google Scholar 

  20. Das PK (2018) Phytoremediation and Nanoremediation: emerging techniques for treatment of acid mine drainage water. Defence Life Sci J 3(2):190–196

    Google Scholar 

  21. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    CAS  PubMed  Google Scholar 

  22. Poschenrieder C, Tolrá R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295

    CAS  PubMed  Google Scholar 

  23. Pagliano C et al (2006) Evidence for PSII-donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol B Biol 84:70–78

    CAS  Google Scholar 

  24. Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213(2):537–551

    CAS  PubMed  Google Scholar 

  25. Wang J, Zhao F-J, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic Hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130(3):1552–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the Hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31(5):1671

    CAS  PubMed  Google Scholar 

  27. Mathew LL (2012) Organochloride Pesticide toxicity. Drugs, diseases and procedures. Medscape References

    Google Scholar 

  28. Chhillar N, Singh NK, Banerjee BD, Bala K, Mustafa M, Sharma D, Chhillar M (2013) Organochlorine pesticide levels and risk of Parkinson’s disease in north Indian population. ISRN Neurol 2013:371034. https://doi.org/10.1155/2013/371034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balali-Mood M, Shariat M (1998) Treatment of organophosphate poisoning. Experience of nerve agents and acute pesticide poisoning on the effects of oximes. J Physiol Paris 92(5–6):375–378

    CAS  PubMed  Google Scholar 

  30. Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371(9612):597–607

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pesticide application and safety training for applicators of public health pesticides. Archived from the original on 2010-08-29. Retrieved 2013-03-25

    Google Scholar 

  32. Popovska-Gorevski M, Dubocovich ML, Rajnarayanan RV (2017) Carbamate insecticides target human melatonin receptors. Chem Res Toxicol 30:574–582

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–335

    PubMed  PubMed Central  Google Scholar 

  34. “Neonicotinoid pesticides & adverse health outcomes”. ntp.niehs.nih.gov

  35. Yamamuro M, Komuro T, Kamiya H, Kato T, Hasegawa H (2019) Yutaka Kameda Sci 366(6465):620–623

    Google Scholar 

  36. Metcalf RL (2000) Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  37. Zaveri M (2010) Study links pesticides to river contamination. The Daily Californian

    Google Scholar 

  38. Thatheyus AJ, Gnana S, Deborah A (2013) Synthetic Pyrethroids: toxicity and biodegradation. Appl Ecol Environ Sci 1(3):33–36

    CAS  Google Scholar 

  39. Robert L (2002) Metcalf “insect control” in Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  40. Toxicological profile for chlordane, U.S. department of health and human services, agency for toxic substances and disease registry

    Google Scholar 

  41. Uemura S, Kawamura H, Tsuji M, Tomita S, Maeda S (2002) In Encyclopedia on the toxicity of agricultural pesticide. Revised. Sanseido Press

    Google Scholar 

  42. Andersen R, Helle, Vinggaard AM, Rasmussen H, Thomas, Gjermandsen IM, Cecilie Bonefeld-Jørgensen E (2002) Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol 179(1):1–12

    CAS  PubMed  Google Scholar 

  43. van Esch GT, van Heemstra-Lequin EAH (1992) Environmental health criteria 130: endrin. International programme on chemical safety. World Health Organization

    Google Scholar 

  44. “Technical Factsheet on: Endrin” (PDF). www.epa.gov. United States Environmental Protection Agency

  45. Zitko V (2003) Persistent organic pollutants (PDF). Springer-Verlag, Berlin, Heidelberg, pp 47–90

    Google Scholar 

  46. “Technical Factsheet on: Endrin”. www.epa.gov. United States Environmental Protection Agency

  47. “Toxicological Profile for Endrin” (1996) Agency for toxic substances and disease registry. United States Department of Health and Human Services. August

    Google Scholar 

  48. “Report on Carcinogens, Eleventh Edition”

    Google Scholar 

  49. Faroon O, Kueberuwa S, Smith L, DeRosa C (1995) ATSDR evaluation of health effects of chemicals. II. Mirex and chlordecone: health effects, toxicokinetics, human exposure, and environmental fate. Toxicol Ind Health 11(6):1–203

    CAS  PubMed  Google Scholar 

  50. “Toxaphene” (2014) Report on carcinogens. National Toxicology Program, Department of Health and Human Services. 13. October 2

    Google Scholar 

  51. Saleh MA (1983) Capillary gas chromatography-electron impact chemical ionization mass spectrometry of toxaphene. J Agric Food Chem 31(4):748–751

    CAS  Google Scholar 

  52. “Toxaphene”. Technology transfer network—air toxics web site. United States Environmental Protection Agency

    Google Scholar 

  53. “Technical Factsheet on: TOXAPHENE”. National primary drinking water regulations. United States Environmental Protection Agency

    Google Scholar 

  54. Rossberg M, Lendle W, Pfleiderer G, Tögel A, Dreher E-L, Langer E, Rassaerts H, Kleinschmidt P, Strack (2006) Chlorinated hydrocarbons. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  55. “Nasty chemicals abound in what was thought an untouched environment”. Economist. 2017-02-18

    Google Scholar 

  56. Aoki Y (2001) Polychlorinated biphenyls, Polychloronated Dibenzo-p-dioxins, and polychlorinated Dibenzofurans as endocrine disrupters—what we have learned from Yusho disease. Environ Res 86(1):2–11

    CAS  PubMed  Google Scholar 

  57. World Health Organization fact sheet: dioxins and their effects on human health 4 October 2016

    Google Scholar 

  58. Beychok MR (1987) A data base for dioxin and furan emissions from refuse incinerators. Atmos Environ 21(1):29–36

    CAS  Google Scholar 

  59. Buckingham WH Jr (1982). Operation ranch hand: the air force and herbicides in southeast Asia 1961–1971. Office of Air Force History, United States Air Force

    Google Scholar 

  60. “Agent orange and cancer”. American Cancer Society. February 11, 2019

    Google Scholar 

  61. “Proceedings of the subregional awareness raising workshop on persistent organic pollutants (POPs), Bangkok, Thailand”. United Nations Environment Programme. November 25–28, 1997

    Google Scholar 

  62. WHO web site. http://chm.pops.int/TheConvention/ThePOPs/The12InitialPOPs/tabid/296/Default.aspx

  63. Stockholm convention on persistent organic pollutants (POPs) June 2017. The 16 New POPs: an introduction to the chemicals added to the Stockholm convention as persistent organic pollutants by the conference of the parties)

    Google Scholar 

  64. Clarithromycin side effects in detail—Drugs.com

  65. Rossi S (ed) (2013) Australian medicines handbook. The Australian Medicines Handbook Unit Trust, Adelaide

    Google Scholar 

  66. “Ciprofloxacin hydrochloride”. The American society of health-system pharmacists

    Google Scholar 

  67. “Clindamycin hydrochloride”. The American society of health-system pharmacists

    Google Scholar 

  68. The American society of health-system pharmacists

    Google Scholar 

  69. Balendres et al (2019)

    Google Scholar 

  70. Khlangwiset P, Shephard GS, Wu F (2011) Aflatoxins and growth impairment: a review. Crit Rev Toxicol 41(9):740–755

    CAS  PubMed  Google Scholar 

  71. Abbas HK (2005) Aflatoxin and food safety. CRC Press. isbn:978-0-8247-2303-3

    Google Scholar 

  72. “Eastern and Southern Africa 2011 Highlights” (PDF). ICRISAT. 2012

    Google Scholar 

  73. “Aflatoxin threat in Nepal, Bangladesh. SciDev.Net South Asia. 2014-12-17

    Google Scholar 

  74. Wegulo SN, Carlson MP (2011) Ergot of small grain cereals and grasses and its health effects on humans and livestock. University of Nebraska–Lincoln Extension

    Google Scholar 

  75. Mahmood NA, Carmichael WW, Pfahler D (1988) Anticholinesterase poisonings in dogs from a cyanobacterial (blue-green algae) bloom dominated by Anabaena flos-aquae. Am J Vet Res 49(4):500–503

    CAS  PubMed  Google Scholar 

  76. Huot RI, Armstrong DL, Chanh TC (1989) Protection against nerve toxicity by monoclonal antibodies to the sodium channel blocker tetrodotoxin. J Clin Investig 83(6):1821–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce b-N-methylamino-L-alanine, a neurotoxic amino acid. PNAS 102(14):5074–5078

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Esterhuizen M, Downing TG (2008) β-N-methylamino-L-alanine (BMAA) in novel south African cyanobacterial isolates. Ecotoxicol Environ Saf 71(2):309–313

    CAS  PubMed  Google Scholar 

  79. Murch SJ, Cox PA, Banack SA (2004) A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. PNAS 101(33):12228–12231

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW (2004) Occurrence of b-methylamino-L-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurol Scand 110(4):267–269

    CAS  PubMed  Google Scholar 

  81. Pablo J, Banack SA, Cox PA, Johnson TE, Papapetropoulos S, Bradley WG, Buck A, Mash DC (2009) Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurol Scand 120(4):215–225

    Google Scholar 

  82. Bradley WG, Mash DC (2009) Beyond Guam: the cyanobacterial/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. ALS 10:7–20

    CAS  Google Scholar 

  83. Sivonen K, Kononen K, Carmichael WW, Dahlem AM, Rinehart KL, Kiviranta J, Niemela SI (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl Environ Microbiol 55(8):1990–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dawson RM (1998) The toxicology of microcystins. Toxicon 36(7):953–962

    CAS  PubMed  Google Scholar 

  85. “Nodularin”. Substances of Biological Interest, Bacterial Toxin, Natural Toxin. SelfDecode

    Google Scholar 

  86. Chen Y, Shen D, Fang D (2013) Nodularins in poisoning. Clin Chim Acta 425:18–29

    CAS  PubMed  Google Scholar 

  87. Kato Y, Scheuer PJ (1974) Aplysiatoxin and debromoaplysiatoxin, constituents of the marine mollusk Stylocheilus longicauda (Quoy and Gaimard, 1824). J Am Chem Soc 96(7):2245–2246

    CAS  PubMed  Google Scholar 

  88. Weinstein IB, Arcoleo J, Backer J, Jeffrey A, Hsiao WL, Gattoni-Celli S, Kirschmeier P, Okin E (1983) Molecular mechanisms of tumor promotion and multistage carcinogenesis. Princess Takamatsu Symp 14:59–74

    CAS  PubMed  Google Scholar 

  89. Arcoleo JP, Weinstein IB (1985) Activation of protein kinase C by tumor promoting phorbol esters, teleocidin and aplysiatoxin in the absence of added calcium. Carcinogenesis 6(2):213–217

    CAS  PubMed  Google Scholar 

  90. Nagai H, Yasumoto T, Hokama Y (1996) Aplysiatoxin and debromoaplysiatoxin as the causative agents of a red alga Gracilaria coronopifolia poisoning in Hawaii. Toxicon 34(7):753–761

    CAS  PubMed  Google Scholar 

  91. Lago J, Rodríguez LP, Blanco L, Vieites JM, Cabado AG (2015) Tetrodotoxin, an extremely potent marine neurotoxin: distribution, toxicity, origin and Therapeutical uses. Mar Drugs 13(10):6384–6406

    CAS  PubMed  PubMed Central  Google Scholar 

  92. “Material Safety Data Sheet Tetrodotoxin ACC# 01139”. Acros Organics N.V

    Google Scholar 

  93. Warin RH, Steventon GB, Mitchell SC (2007) Molecules of death. Imperial College Press, London, p 390

    Google Scholar 

  94. “Artificial sweeteners. What’s the difference?”. Tribunedigital-chicagotribune

    Google Scholar 

  95. “Sweetener Market Projected to Be Worth USD 2.84 Billion by 2021: Technavio”. Yahoo Finance. Archived from the original on 25 April 2017. Retrieved 10 Jan 2018

    Google Scholar 

  96. Azad MB, Abou-Setta AM, Chauhan BF, Rabbani R, Lys J, Copstein L, Mann A, Jeyaraman MM, Reid AE, Fiander M, MacKay DS, McGavock J, Wicklow B, Zarychanski R (2017) Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Can Med Assoc J 189(28):E929. https://doi.org/10.1503/cmaj.161390

    Article  Google Scholar 

  97. Canadian diabetes association 2008 clinical practice guidelines for the prevention and management of diabetes in Canada (2008) Can J Diabetes 32(Supplement 1):S41

    Google Scholar 

  98. Goldsmith LA (2000) Acute and subchronic toxicity of sucralose. Food Chem Toxicol 38(Suppl 2):S53–S69

    CAS  PubMed  Google Scholar 

  99. Schiffman SS, Rother KI (2013) Sucralose, a synthetic organochlorine sweetener: overview of biological issues. J Toxicol Environ Health B 16(7):399–451

    CAS  Google Scholar 

  100. “Aspartame”. PubChem, National Library of Medicine, US National Institutes of Health. 17 August 2019. Retrieved 24 August 2019

    Google Scholar 

  101. EFSA National Experts (2010) Report of the meetings on aspartame with national experts. EFSA

    Google Scholar 

  102. “Aspartame”. PubChem, National Library of Medicine, US National Institutes of Health. 17 August 2019

    Google Scholar 

  103. Struck S, Jaros D, Brennan CS, Rohm H (2014) Sugar replacement in sweetened bakery goods. Int J Food Sci Technol 49(9):1963–1976

    CAS  Google Scholar 

  104. MSDS Melamine

    Google Scholar 

  105. Mast RW, Jeffcoat AR, Sadler BM, Kraska RC, Friedman MA (1983) Metabolism, disposition and excretion of [14C]melamine in male Fischer 344 rats. Food Chem Toxicol 21(6):807–810

    CAS  PubMed  Google Scholar 

  106. Melnick RL, Boorman GA, Haseman JK, Montali RJ, Huff J (1984) Urolithiasis and bladder carcinogenicity of melamine in rodents. Toxicol Appl Pharmacol 72(2):292–303

    CAS  PubMed  Google Scholar 

  107. IUCLID dataset substance ID: 108-78-1. Melamine. In. 18 Feb ed: European Commission, European Chemicals Bureau; 2000

    Google Scholar 

  108. National Toxicology Program (1983) NTP carcinogenesis bioassay of melamine (CAS no. 108-78-1) in F344/N rats and B6C3F1 mice(feed study). Natl Toxicol Program Tech Rep Ser 245:1–171

    Google Scholar 

  109. Ogasawara H, Imaida K, Ishiwata H, Toyoda K, Kawanishi T, Uneyama C et al (1995) Urinary bladder carcinogenesis induced by melamine in F344 male rats: correlation between carcinogenicity and urolith formation. Carcinogenesis 16(11):2773–2777

    CAS  PubMed  Google Scholar 

  110. Okumura M, Hasegawa R, Shirai T, Ito M, Yamada S, Fukushima S (1992) Relationship between calculus formation and carcinogenesis in the urinary bladder of rats administered the non-genotoxic agents thymine or melamine. Carcinogenesis 13(6):1043–1045

    CAS  PubMed  Google Scholar 

  111. Branigan T (2008) Chinese figures show fivefold rise in babies sick from contaminated milk. The Guardian, London. Archived from the original on 5 December 2008

    Google Scholar 

  112. J Med Toxicol (2010) 6:50–55

    Google Scholar 

  113. Scott McDonald (2008) Nearly 53,000 Chinese children sick from milk. Associated Press. Archived from the original on 10 February 2014

    Google Scholar 

  114. Workshop on Melamine, 2008 November 18–19. Beijing, People’s Republic of China

    Google Scholar 

  115. Food Chem (2016) 192:813–824

    Google Scholar 

  116. Gičević A, Hindija L, Karačić A (2020) Toxicity of Azo dyes in pharmaceutical industry. In: Badnjevic A, Škrbić R, Gurbeta Pokvić L (eds) CMBEBIH 2019. CMBEBIH 2019. IFMBE proceedings, vol 73. Springer, Cham

    Google Scholar 

  117. Ninomiya K, Technical Committee, Umami Manufacturers Association of Japan (1998) Natural occurrence. Food Rev Intl 14(2 & 3):177–211

    Google Scholar 

  118. Loliger J (2000) Function and importance of glutamate for Savory foods. J Nutr 130(4s Suppl):915s–920s

    CAS  PubMed  Google Scholar 

  119. Yamaguchi S (1991) Basic properties of umami and effects on humans. Physiol Behav 49(5):833–841

    CAS  PubMed  Google Scholar 

  120. “Questions and Answers on Monosodium glutamate (MSG)”. www.fda.gov. U.S. Food and Drug Administration. 19 November 2012

  121. Barry-Jester AM (2016) How MSG Got A Bad Rap: Flawed Science And Xenophobia

    Google Scholar 

  122. Obayashi Y, Nagamura Y (2016) Does monosodium glutamate really cause headache? : A systematic review of human studies. J Headache Pain 17:54

    PubMed  PubMed Central  Google Scholar 

  123. Walker R, Lupien JR, School of Biological Sciences, University of Surrey, UK, and Food and Nutrition Division, FAO of the United Nations, Italy (2000) The safety evaluation of monosodium glutamate. J Nutr 130(4S Suppl):1049S–1052S

    Google Scholar 

  124. Am J Epidemiol (2011) 174(3):305–315. https://doi.org/10.1093/aje/kwr092. Epub 2011 Jun 17

  125. Aschebrook-Kilfoy B, Cross AJ, Stolzenberg-Solomon RZ, Schatzkin A, Hollenbeck AR, Sinha R, Ward MH. Pancreatic cancer and exposure to dietary nitrate and nitrite in the NIH-AARP Diet and Health Study

    Google Scholar 

  126. Lalita K, GardnerGlen D (1993) Lawrence, benzene production from decarboxylation of benzoic acid in the presence of ascorbic acid and a transition-metal catalyst. J Agric Food Chem 41(5):693–695

    Google Scholar 

  127. Food and Drug Administration (1990) U.S. public health service, Department of Health and Human Services FDA Enforcement Report February 28

    Google Scholar 

  128. Food Standards Agency (2006) Survey of benzene in soft drinks. March

    Google Scholar 

  129. Elliott V (2006) Soft drinks pulled from shelves over cancer fear. The Times

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Shigaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shigaki, T. (2020). Health Effects of Environmental Pollutants. In: Li, X., Liu, P. (eds) Gut Remediation of Environmental Pollutants. Springer, Singapore. https://doi.org/10.1007/978-981-15-4759-1_1

Download citation

Publish with us

Policies and ethics