Skip to main content

Screening and Detection of Gastric Cancer Circulating MicroRNA Biomarkers

  • Chapter
  • First Online:
Gastric Cancer Prewarning and Early Diagnosis System

Part of the book series: Translational Medicine Research ((TRAMERE))

  • 659 Accesses

Abstract

The miRNAs are valuable biomarkers for the diagnosis and prognosis of gastric cancer. This chapter summarizes current advances of microRNA biomarkers of gastric cancer; especially miR-16-5p and miR-19b-3p were identified to be the novel potential plasma biomarkers to detect gastric cancer. This chapter also reviews the main detection methods of microRNA biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  2. Meyer SU, Pfaffl MW, Ulbrich SE. Normalization strategies for microRNA profiling experiments: a 'normal' way to a hidden layer of complexity? Biotechnol Lett. 2010;32:1777–88.

    Article  CAS  PubMed  Google Scholar 

  3. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  4. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. Embo Mol Med. 2012;4:143–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebet BL, Mak RH, Ferrando AA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  7. Chen WQ, Zheng RS, Zhang SW, Zhao P, Zeng HM, Zou XN, He J. Annual report on status of cancer in China, 2010. Chinese J Cancer Res. 2014;26:48–58.

    Google Scholar 

  8. Hartgrink HH, Jansen EPM, van Grieken NCT, van de Velde CJH. Gastric cancer. The Lancet. 2009;374:477–90.

    Article  Google Scholar 

  9. Wang J, Yu JC, Kang WM, Ma ZQ. Treatment strategy for early gastric cancer. Surg Oncol. 2012;21:119–23.

    Article  CAS  PubMed  Google Scholar 

  10. Wu WKK, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJY. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene. 2010;29:5761–71.

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Wang Q, Liu H, Hu B, Zhou W, Cheng Y. MicroRNA expression and its implication for the diagnosis and therapeutic strategies of gastric cancer. Cancer Lett. 2010;297:137–43.

    Article  CAS  PubMed  Google Scholar 

  12. Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X, Zarate R, Diaz-Gonzalez JA, Ramirez N, Sola JJ, et al. microRNA-451 Regulates Macrophage Migration Inhibitory Factor Production and Proliferation of Gastrointestinal Cancer Cells. Clin Cancer Res. 15;2009:2281–90.

    Google Scholar 

  13. Wu Q, Yang Z, Wang F, Hu S, Yang L, Shi Y, Fan D. MiR-19b/20a/92a regulates the self-renewal and proliferation of gastric cancer stem cells. Journal of cell science, 2013;126:4220–9

    Google Scholar 

  14. Wu Q, Yang Z, An Y, Hu H, Yin J, Zhang P, Nie Y, Wu K, Shi Y, Fan D. MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumor suppressor MXD1. Cell Death Dis. 2014;5:e1144.

    Google Scholar 

  15. Kim DN, Chae H-S, Oh ST, Kang J-H, Park CH, Park WS, Takada K, Lee JM, Lee W-K, Lee SK. Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J Virol. 2007;81:1033–6.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou H, Guo J-M, Lou Y-R, Zhang X-J, Zhong F-D, Jiang Z, Cheng J, Xiao B-X. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J Mol Med-JMM. 2010;88:709–17.

    Article  CAS  Google Scholar 

  17. Mitchell PS. Circulating microRNAs as stable blood-based markers for cancer detection. P Natl Acad Sci U S A. 2008;105:10513.

    Article  CAS  Google Scholar 

  18. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–92.

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  20. Lawson JD, Sicklick JK, Fanta PT. Gastric Cancer. Curr Probl Cancer. 2011;35:97–127.

    Article  PubMed  Google Scholar 

  21. Catalano V, Labianca R, Beretta GD, Gatta G, de Braud F, Van Cutsem E. Gastric cancer. Crit Rev Oncol Hemat. 2009;71:127–64.

    Article  Google Scholar 

  22. Taback B, Hoon DSB. Circulating nucleic acids in plasma and serum: Past, present and future. Curr Opin Mol Ther. 2004;6:273–8.

    CAS  PubMed  Google Scholar 

  23. Thiel A, Ristimaki A. Gastric Cancer: Basic Aspects. Helicobacter. 2012;17:26–9.

    Article  CAS  PubMed  Google Scholar 

  24. Berger F, Reiser MF. Micro-RNAs as potential new molecular biomarkers in oncology: have they reached relevance for the clinical imaging sciences? Theranostics. 2013;3:943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zen K, Zhang C-Y. Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 2012;32:326–48.

    Article  PubMed  Google Scholar 

  26. Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hemat. 2011;80:193–208.

    Article  Google Scholar 

  27. Waldman SA, Terzic A. Translating microRNA discovery into clinical biomarkers in cancer. Jama-J Am Med Assoc. 2007;297:1923–5.

    Article  CAS  Google Scholar 

  28. De Guire V, Robitaille R, Tetreault N, Guerin R, Menard C, Bambace N, Sapieha P. Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: Promises and challenges. Clin Biochem. 2013;46:846–60.

    Article  PubMed  Google Scholar 

  29. Mo M-H, Chen L, Fu Y, Wang W, Fu SW. Cell-free Circulating miRNA Biomarkers in Cancer. J Cancer. 2012;3:432–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, Konishi H, Morimura R, Deguchi K, Fujiwara H, et al. Circulating microRNAs in plasma of patients with gastric cancers. Brit J Cancer. 2010;102:1174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu R, Zhang CN, Hu ZB, Li G, Wang C, Yang CH, Huang DZ, Chen X, Zhang HY, Zhuang R, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer. 2011;47:784–91.

    Article  CAS  PubMed  Google Scholar 

  32. Liu HS, Zhu L, Liu BY, Yang L, Meng XX, Zhang W, Ma YY, Xiao HS. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 2012;316:196–203.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, Wang J-F, Zhang Z, Lu S, Huang X, et al. Plasma MicroRNA Panel to Diagnose Hepatitis B Virus-Related Hepatocellular Carcinoma. J Clin Oncol. 2011;29:4781–8.

    Article  CAS  PubMed  Google Scholar 

  34. Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, Calatayud D, Nielsen SE, Yilmaz M, Hollander NH, et al. MicroRNA Biomarkers in Whole Blood for Detection of Pancreatic Cancer. Jama-J Am Med Assoc. 2014;311:392–404.

    Article  CAS  Google Scholar 

  35. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251:499–505.

    Article  PubMed  Google Scholar 

  36. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Brit J Haematol. 2008;141:672–5.

    Article  Google Scholar 

  37. Liu CJ, Kao SY, Tu HF, Tsai MM, Chang KW, Lin SC. Increase of microRNA miR‐31 level in plasma could be a potential marker of oral cancer. Oral Dis. 2010;16:360–4.

    Article  PubMed  Google Scholar 

  38. Huang ZH, Huang D, Ni SJA, Peng ZL, Sheng WQ, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127:118–26.

    Article  CAS  PubMed  Google Scholar 

  39. Zampetaki A, Mayr M. Analytical challenges and technical limitations in assessing circulating MiRNAs. Thromb Haemostasis. 2012;108:592–8.

    Article  CAS  Google Scholar 

  40. Konishi H, Ichikawa D, Komatsu S, Shiozaki A, Tsujiura M, Takeshita H, Morimura R, Nagata H, Arita T, Kawaguchi T, et al. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Brit J Cancer. 2012;106:740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cortez MA, Calin GA. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Th. 2009;9:703–11.

    Article  CAS  Google Scholar 

  42. Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10:R64.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, Song Y, Zhang C, Zhi X, Fu H, Ma Y, Chen Y, Pan F, Wang K, Ni J, et al. Circulating MiR-16-5p and MiR-19b-3p as Two Novel Potential Biomarkers to Indicate Progression of Gastric Cancer. Theranostics. 2015;5:733–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hunt EA, Goulding AM, Deo SK. Direct detection and quantification of microRNAs. Anal Biochem. 2009;387:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dijkstra JR, Mekenkamp LJM, Teerenstra S, De Krijger I, Nagtegaal ID. MicroRNA expression in formalin-fixed paraffin embedded tissue using real time quantitative PCR: the strengths and pitfalls. J Cell Mol Med. 2012;16:683–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koshiol J, Wang E, Zhao Y, Marincola F, Landi MT. Strengths and Limitations of Laboratory Procedures for MicroRNA Detection. Cancer Epidem Biomar. 2010;19:907–11.

    Article  CAS  Google Scholar 

  47. Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron. 2009;24:2504–8.

    Article  CAS  PubMed  Google Scholar 

  48. Yin H, Zhou Y, Zhang H, Meng X, Ai S. Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens Bioelectron. 2012;33:247–53.

    Article  CAS  PubMed  Google Scholar 

  49. Husale S, Persson HHJ, Sahin O. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature. 2009;462:1075–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang L, Cheng Y, Wang H, Li Z. A homogeneous fluorescence sensing platform with water-soluble carbon nanoparticles for detection of microRNA and nuclease activity. Analyst. 2012;137:3667–72.

    Article  CAS  PubMed  Google Scholar 

  51. Gu L-Q, Wanunu M, Wang MX, McReynolds L, Wang Y. Detection of miRNAs with a nanopore single-molecule counter. Expert Rev Mol Diagn. 2012;12:573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fan Y, Chen X, Trigg AD, Tung C-h, Kong J, Gao Z. Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J Amer Chem Soc. 2007;129:5437–43.

    Article  CAS  Google Scholar 

  53. Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX, Ruan KC. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res. 2005;33(2):e17.

    Google Scholar 

  54. Wark AW, Lee HJ, Corn RM. Multiplexed detection methods for profiling microRNA expression in biological samples. Angew Chem Int Ed. 2008;47:644–52.

    Article  CAS  Google Scholar 

  55. Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods. 2010;50:244–9.

    Article  CAS  PubMed  Google Scholar 

  56. Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol. 2008;18:89–102.

    Article  CAS  PubMed  Google Scholar 

  57. Kore AR, Hodeib M, Hu Z. Chemical synthesis of LNA-mCTP and its application for microRNA detection. Nucleos Nucleot Nucl. 2008;27:1–17.

    Article  CAS  Google Scholar 

  58. Fabani MM, Abreu-Goodger C, Williams D, Lyons PA, Torres AG, Smith KGC, Enright AJ, Gait MJ, Vigorito E. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res. 2010;38:4466–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim H, Choi J-j, Cho M, Park H. A PNA microarray platform for miRNA expression profiling using on-chip labeling technology. Biochip J. 2012;6:25–33.

    Article  CAS  Google Scholar 

  60. Fabani MM, Gait MJ. miR-122 targeting with LNA/2 '-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA-Publ RNA Soc. 2008;14:336–46.

    Google Scholar 

  61. Cissell KA, Deo SK. Trends in microRNA detection. Anal Bioanal Chem. 2009;394:1109–16.

    Article  CAS  PubMed  Google Scholar 

  62. Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 2009;4:e6229.

    Google Scholar 

  63. Matveeva EG, Gryczynski Z, Stewart DR, Gryczynski I. Ratiometric FRET-based detection of DNA and micro-RNA on the surface using TIRF detection. J Lumin. 2010;130:698–702.

    Article  CAS  Google Scholar 

  64. Dodgson BJ, Mazouchi A, Wegman DW, Gradinaru CC, Krylov SN. Detection of a Thousand Copies of miRNA without Enrichment or Modification. Anal Chem. 2012;84:5470–4.

    Article  CAS  PubMed  Google Scholar 

  65. Jiang L, Duan D, Shen Y, Li J. Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. Biosens Bioelectron. 2012;34:291–5.

    Article  CAS  PubMed  Google Scholar 

  66. Neely LA, Patel S, Garver J, Gallo M, Hackett M, McLaughlin S, Nadel M, Harris J, Gullans S, Rooke J. A single-molecule method for the quantitation of microRNA gene expression. Nat Methods. 2006;3:41–6.

    Article  CAS  PubMed  Google Scholar 

  67. Cissell KA, Hunt EA, Deo SK. Resonance energy transfer methods of RNA detection. Anal Bioanal Chem. 2009;393:125–35.

    Article  CAS  PubMed  Google Scholar 

  68. Bi S, Zhang J, Hao S, Ding C, Zhang S. Exponential amplification for chemiluminescence resonance energy transfer detection of microRNA in real samples based on a cross-catalyst strand-displacement network. Anal Chem. 2011;83:3696–702.

    Article  CAS  PubMed  Google Scholar 

  69. Broyles D, Cissell K, Kumar M, Deo S. Solution-phase detection of dual microRNA biomarkers in serum. Anal Bioanal Chem. 2012;402:543–50.

    Article  CAS  PubMed  Google Scholar 

  70. Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods. 2004;1:47–53.

    Article  CAS  PubMed  Google Scholar 

  71. Cissell KA, Rahimi Y, Shrestha S, Hunt EA, Deo SK. Bioluminescence-based detection of MicroRNA, miR21 in breast cancer cells. Anal Chem. 2008;80:2319–25.

    Article  CAS  PubMed  Google Scholar 

  72. Song W, Qiu X, Lau C, Lu J. Quantum dot-enhanced detection of dual short RNA sequences via one-step template-dependent surface hybridization. Anal Chim Acta. 2012;735:114–20.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang J, Fu Y, Mei YP, Jiang F, Lakowicz JR. Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell. Anal Chem. 2010;82:4464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Do Won H, In Chan S, Dong Soo L, Soonhag K. Smart Magnetic Fluorescent Nanoparticle Imaging Probes to Monitor MicroRNAs. Small. 2010;6:81–8.

    Article  Google Scholar 

  75. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4:435–46.

    Article  CAS  PubMed  Google Scholar 

  76. Huang X, Ren J. Nanomaterial-based chemiluminescence resonance energy transfer: A strategy to develop new analytical methods. Trac-Trend Anal Chem. 2012;40:77–89.

    Article  CAS  Google Scholar 

  77. Zhang Y, Zhang C-y. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem. 2012;84:224–31.

    Article  CAS  PubMed  Google Scholar 

  78. Cissell KA, Campbell S, Deo SK. Rapid, single-step nucleic acid detection. Anal Bioanal Chem. 2008;391:2577–81.

    Article  CAS  PubMed  Google Scholar 

  79. Petty JT, Zheng J, Hud NV, Dickson RM. DNA-templated Ag nanocluster formation. J Am Chem Soc. 2004;126:5207–12.

    Article  CAS  PubMed  Google Scholar 

  80. Richards CI, Choi S, Hsiang J-C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y-L, Dickson RM. Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc. 2008;130:5038–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Patel SA, Richards CI, Hsiang J-C, Dickson RM. Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. J Am Chem Soc. 2008;130:11602–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou Z, Du Y, Dong S. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules. Biosens Bioelectron. 2011;28:33–7.

    Article  PubMed  Google Scholar 

  83. Shah P, Rorvig-Lund A, Ben Chaabane S, Thulstrup PW, Kjaergaard HG, Fron E, Hofkens J, Yang SW, Vosch T. Design aspects of bright red emissive silver nanoclusters/DNA probes for microRNA detection. ACS Nano. 2012;6:8803–14.

    Article  CAS  PubMed  Google Scholar 

  84. Yang SW, Vosch T. Rapid detection of microRNA by a silver nanocluster DNA probe. Anal Chem. 2011;83:6935–9.

    Article  CAS  PubMed  Google Scholar 

  85. Li J, Schachermeyer S, Wang Y, Yin Y, Zhong W. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals. Anal Chem. 2009;81:9723–9.

    Article  CAS  PubMed  Google Scholar 

  86. Kim JK, Choi KJ, Lee M, Jo MH, Kim S. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials. 2012;33:207–17.

    Article  CAS  PubMed  Google Scholar 

  87. Muniz-Miranda M, Gellini C, Pagliai M, Innocenti M, Salvi PR, Schettino V. SERS and computational studies on microRNA chains adsorbed on silver surfaces. J Phys Chem C. 2010;114:13730–5.

    Article  CAS  Google Scholar 

  88. Wang Z, Yang B. MicroRNA Expression Detection Methods. Canada: Springer-Verlag; 2010.

    Book  Google Scholar 

  89. Driskell JD, Seto AG, Jones LP, Jokela S, Dluhy RA, Zhao YP, Tripp RA. Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron. 2008;24:917–22.

    Article  CAS  Google Scholar 

  90. Zhao Y.-P. and Liu Y.-J. The Silver Nanorod Array SERS Substrates. AIP Conf Proc. 2010;1267:277–8.

    Google Scholar 

  91. Driskell JD, Tripp RA. Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate. Chem Commun. 2010;46:3298–300.

    Article  CAS  Google Scholar 

  92. Wang H-N, Vo-Dinh T. Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection. Small. 2011;7:3067–74.

    Article  CAS  PubMed  Google Scholar 

  93. Xu FG, Dong CQ, Xie C, Ren JC. Ultrahighly sensitive homogeneous detection of DNA and microRNA by using single-silver-nanoparticle counting. Chem-Eur J. 2010;16:1010–6.

    Article  CAS  PubMed  Google Scholar 

  94. Alhasan AH, Kim DY, Daniel WL, Watson E, Meeks JJ, Thaxton CS, Mirkin CA. Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid-gold nanoparticle conjugates. Anal Chem. 2012;84:4153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang W-J, Li X-B, Li Y-Y, Zhao L-F, He W-L, Gao Y-Q, Wan Y-J, Xia W, Chen T, Zheng H, et al. Quantification of microRNA by gold nanoparticle probes. Anal Biochem. 2008;376:183–8.

    Article  CAS  PubMed  Google Scholar 

  96. Wang Z, Yang B. MicroRNA Expression Detection Methods. Canada: Springer-Verlag; 2010.

    Book  Google Scholar 

  97. Zhou WJ, Chen YL, Corn RM. Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nanoparticles and surface plasmon resonance imaging measurements. Anal Chem. 2011;83:3897–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Jingpu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V. and Shanghai Jiao Tong University Press, Shanghai

About this chapter

Cite this chapter

Jingpu, Z., Cui, D. (2017). Screening and Detection of Gastric Cancer Circulating MicroRNA Biomarkers. In: Cui, D. (eds) Gastric Cancer Prewarning and Early Diagnosis System. Translational Medicine Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0951-2_3

Download citation

Publish with us

Policies and ethics