Skip to main content
Log in

Trends in microRNA detection

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short, ~22 nucleotide length RNAs that perform gene regulation. Recently, miRNA has been shown to be linked with the onset of cancer and other diseases based on miRNA expression levels. It is important, therefore, to understand miRNA function as it pertains to disease onset; however, in order to fully understand miRNA’s role in a disease, it is necessary to detect the expression levels of these small molecules. The most widely used miRNA detection method is Northern blotting, which is considered as the standard of miRNA detection methods. This method, however, is time-consuming and has low sensitivity. This has led to an increase in the amount of detection methods available. These detection methods are either solid phase, occurring on a solid support, or solution phase, occurring in solution. While the solid-phase methods are adaptable to high-throughput screening and possess higher sensitivity than Northern blotting, they lack the ability for in vivo use and are often time-consuming. The solution-phase methods are advantageous in that they can be performed in vivo, are very sensitive, and are rapid; however, they cannot be applied in high-throughput settings. Although there are multiple detection methods available, including microarray technology, luminescence-based assays, electrochemical assays, etc., there is still much work to be done regarding miRNA detection. The current gaps of miRNA detection include the ability to perform multiplex, sensitive detection of miRNA with single-nucleotide specificity along with the standardization of these new methods. Current miRNA detection methods, gaps in these methods, miRNA therapeutic options, and the future outlook of miRNA detection are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) Cell 75:843–854

    Article  CAS  Google Scholar 

  2. Cissell KA, Shrestha S, Deo SK (2007) Anal Chem 79:4754–4761

    Article  CAS  Google Scholar 

  3. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) EMBO J 21:4663–4670

    Article  CAS  Google Scholar 

  4. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) Nature 425:415–419

    Article  CAS  Google Scholar 

  5. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Science 303:95–98

    Article  CAS  Google Scholar 

  6. Bohnsack MT, Czaplinski K, Gorlich D (2004) RNA 10:185–191

    Article  CAS  Google Scholar 

  7. Zeng Y, Culen BR (2004) Nucleic Acids Res 32:4776–4785

    Article  CAS  Google Scholar 

  8. Yi R, Qin Y, Macara IG, Cullen BR (2003) Genes Dev 17:3011–3016

    Article  CAS  Google Scholar 

  9. Bartel DP (2004) Cell 116:281–297

    Article  CAS  Google Scholar 

  10. Sassen S, Miska EA, Caldas C (2008) Virchows Arch 452:1–10

    Article  CAS  Google Scholar 

  11. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrish F, Croce CM (2002) Proc Natl Acad Sci USA 99:15524–15529

    Article  CAS  Google Scholar 

  12. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiana P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) Cancer Res 65:7065–7070

    Article  CAS  Google Scholar 

  13. Chan JA, Krichevsky AM, Kosik KS (2005) Cancer Res 65:6029–6033

    Article  CAS  Google Scholar 

  14. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Pure E, Agami R (2008) Nat Cell Biol 10:202–210

    Article  CAS  Google Scholar 

  15. Jagla M, Feve M, Kessler P, Lapouge G, Erdmann E, Serra S, Bergerat JP, Ceraline J (2007) Endocrinology 148:4334–4343

    Article  CAS  Google Scholar 

  16. Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH, Meissner G, Patterson C, Hannon GJ, Wang DZ (2008) Proc Natl Acad Sci USA 105:2111–2116

    Article  CAS  Google Scholar 

  17. Lukiw WJ, Zhao Y, Cui JG (2008) J Biol Chem 283:31315–31322

    Article  CAS  Google Scholar 

  18. Thum T, Gross C, Fielder J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JTR, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) Nature 456:980–986

    Article  CAS  Google Scholar 

  19. Xiao C, Rajewsky K (2009) Cell 136:26–36

    Article  CAS  Google Scholar 

  20. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Nature 438:685–689

    Article  Google Scholar 

  21. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Cancer Res 68:6652–6660

    Article  CAS  Google Scholar 

  22. Liu Z, Winters M, Holodniy M, Dai HJ (2007) Angew Chem Int Ed 46:2023–2027

    Article  CAS  Google Scholar 

  23. Kam NWS, Liu Z, Dai HJ (2005) J Am Chem Soc 127:12492–12493

    Article  CAS  Google Scholar 

  24. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Proc Natl Acad Sci USA 103:3357–3362

    Article  CAS  Google Scholar 

  25. Varallyay E, Burgyan J, Havelda Z (2008) Nat Protoc 3:190–196

    Article  CAS  Google Scholar 

  26. Calin GA, Croce GM (2006) Nat Rev Cancer 6:857–866

    Article  CAS  Google Scholar 

  27. Cissell KA, Rahimi Y, Shrestha S, Junt EA, Deo SK (2008) Anal Chem 80:2319–2325

    Article  CAS  Google Scholar 

  28. Matthews JC, Hori K, Cormier MH (1977) Biochemistry 16:85–91

    Article  CAS  Google Scholar 

  29. Gao Z, Yu YH (2007) Biosens Bioelectron 22:933–940

    Article  CAS  Google Scholar 

  30. Gao Z, Yang Z (2006) Anal Chem 78:1470–1477

    Article  CAS  Google Scholar 

  31. Driskell JD, Seto AG, Jones LP, Jokela S, Dluhy RA, Zhao YP, Tripp RA (2008) Biosens Bioelectron 24:923–928

    Article  CAS  Google Scholar 

  32. Shi R, Chiang VL (2005) Biotechniques 39:519–525

    Article  CAS  Google Scholar 

  33. Cissell KA, Campbell S, Deo SK (2008) Anal Bioanal Chem 391:2577–2581

    Article  CAS  Google Scholar 

  34. Neely LA, Patel S, Garver J, Gallo M, Hackett M, McLaughlin S, Nadel M, Harris J, Gullans S, Rooke J (2006) Nat Methods 3:41–46

    Article  CAS  Google Scholar 

  35. Cissell KA, Rahimi Y, Shrestha S, Deo SK (2008) Bioconjug Chem. doi:10.1021/bc8003099

  36. Ozawa T, Takeuchi TM, Kaihara A, Sato M, Umezawa Y (2001) Anal Chem 73:5866–5874

    Article  CAS  Google Scholar 

  37. Paulmurugan R, Gambhir SS (2003) Anal Chem 75:1584–1589

    Article  CAS  Google Scholar 

  38. Fujikawa Y, Kato N (2007) Plant J 52:185–195

    Article  CAS  Google Scholar 

  39. Jach G, Pesch M, Richter K, Frings S, Uhrig JF (2006) Nat Methods 3:597–600

    Article  CAS  Google Scholar 

  40. Curry E, Ellis SE, Pratt SL (2008) Mol Reprod Dev. doi:10.1002/mrd.20980

  41. So MK, Xu C, Loening AM, Gambhir SS, Rao J (2006) Nat Bioechnol 24:339–343

    Article  CAS  Google Scholar 

  42. Griffiths-Jones S (2004) Nucleic Acids Res 32:D109–111

    Article  CAS  Google Scholar 

  43. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) Nucleic Acids Res 34:D140–D144

    Article  CAS  Google Scholar 

  44. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) Nucleic Acids Res 36:D154–D158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapna K. Deo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cissell, K.A., Deo, S.K. Trends in microRNA detection. Anal Bioanal Chem 394, 1109–1116 (2009). https://doi.org/10.1007/s00216-009-2744-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2744-6

Keywords

Navigation