Skip to main content

Abstract

The term shungite was introduced by Inostrantsev (1879) for ‘a new type of amorphous carbon’ from black shales of the Huronian Formation in the Trans-Onega area, Russia. Later this term was used for layers, lenses and veinlets of carbon-rich material associated with the metamorphic complex of early Proterozoic age in Karelia, Russia (Kwiecinska, 1968; Khavari-Khorasani and Murchison, 1979; Volkova and Bogdanova, 1983; 1986). A number of studies of the Karelian shungite attempted to elucidate on the organic matter source and properties. However, the origin of the shungite and processes responsible for its maturation still remain uncertain. Although suggestions have been made that carbon in the shungite may have an abiogenic volcanic source, most studies support a biogenic source. Some studies regard shungite predominantly as in situ organic matter (Volkova and Bogdanova, 1986), while others claim it to be a migrated solid bitumen (Khavari-Khorasani and Murchison, 1979; Jehlicka and Rouzaud, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baedecker, P.A. (1971) Indium. In: B. Mason (ed) Handbook of Elemental Abundances in Meteorites. Gordon and Breach Science Publishers, New York. 369–375.

    Google Scholar 

  • Bralower, T.J. and Thierstein, H.R. (1987) Organic carbon and metal accumulation rates in Holocene and mid-Cretaceous sediments: Paleooceanographic significance. In: J. Brooks and A.J. Fleet (eds) Marine Petroleum Source Rocks. Blackwell Scientific, Oxford, pp. 345–369.

    Google Scholar 

  • Brooks, J.D. and Taylor, G.H. (1968) The formation of some graphitizing carbons. Chem. Phys. Carbon. 4: 243–286.

    Google Scholar 

  • Daniel, R., Morgan, H. and Hudson, J.A. (1987) Superbugs spring from hot water. New Sci 19: 36–38.

    Google Scholar 

  • Degens, E.T. and Ittekott, V. (1982) In-situ metal-staining of biological membranes in sediments. Nature. 298: 262–264.

    Article  Google Scholar 

  • Fuchs, G., Thauer, R., Ziegler, H. and Stichler, W. (1979) Carbon isotope fractionation by Methanobacterium the rmoautotrophicum. Arch. Microbiol. 120: 135–139.

    Article  Google Scholar 

  • Galdobina, L.L. and Golubev, A.I. (1982) Carbonaceous (shungite-bearing) and shungitic rocks of the Onega Trough. Karel’sk Fil. Akad. Nauk SSSR, Petrozavodsk, pp. 100–113 (in Russian).

    Google Scholar 

  • Glikson, M. and Taylor, G.H. (1989) Cyanobacterial mats; major contributors to the organic matter in Toolebuc Formation of oil shales. J. Geol. Soc. Aust. Sp. Publ. 12: 276–286.

    Google Scholar 

  • Imbus, W.I. and McKirdy, D.M. (1994) Organic geochemistry of Precambrian sedimentary rocks. In: M.H. Engei and S.A. Macko (eds) Organic Geochemistry, Principles and Applications. Plenum press, New York, pp. 657–684.

    Google Scholar 

  • Inostrantsev, A.A. (1879) New end member of amorphous carbon. Gorn. Zh. 2: 314–342 (in Russian).

    Google Scholar 

  • Jehlicka, J. and Rouzaud, J.-N. (1989) Organic geochemistry of Precambrian shales and schists (Bohemian Massif, Central Europe). Org. Geochem. 16: 865–872.

    Article  Google Scholar 

  • Jehlicka, J. and Rouzaud, J.-N. (1993) Transmission electron microscopy of Carbonaceous matter in Precambrian shungite from Karelia. In: J. Parnell et al. (eds) Bitumens in Ore Deposits Springer-Verlag, Berlin, pp. 53–60.

    Google Scholar 

  • Kazhu, J.A. (1993) Paleoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fenno-Scandian Shield. Geol. Surv. Finland Bull. 371: 87–96.

    Google Scholar 

  • Khavari-Khorasani, G. and Murchison, D. (1979) The nature of Karelian shungite. Chem. Geol. 26: 165–182.

    Article  Google Scholar 

  • Kwiecinska, B. (1968) Investigation of shungite. Bull. Acad. Pol. Sci. 16: 61–65.

    Google Scholar 

  • Mackowsky, M.-Th. (1982) Sampling and preparation of polished surfaces or thin sections. In E. Stach et al. (eds) Stachs’ Textbook of Coal Petrology. Gebruder Borntraeger, Berlin, pp. 295–299.

    Google Scholar 

  • Mycke, B., Michaelis, W., and Degens, E.T. (1987) Biomarkers in sedimentary sulfides of Precambrian age. Org. Geoch. 13: 619–625.

    Article  Google Scholar 

  • Oberlin, A., Boulmier, J.L. and Villey, M. (1980) Electron microscopic study of kerogen microtexture. Selected criteria for determining the evolution path and evolution stage of kerogen. In: B. Durand (ed), Kerogen Editions Technip, Paris, pp. 191–241.

    Google Scholar 

  • Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W. and Davis, A. (1981) Concerning the application of FTIR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. Appl. Spectrosc. 35: 475–485.

    Article  Google Scholar 

  • Parnell, J., Carey, P.E. and Bottrell, S.H. (1994) The occurrence of autigenic minerals in solid bitumens. J. Sedimentary Res. A64: 95–100.

    Google Scholar 

  • Schidlowski, M. (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature. 333: 313–318.

    Article  Google Scholar 

  • Schoell, M. and Wellmer, F.-W. (1981) Anomalous 13C depletion in early Precambrian graphites from Superior Province, Canada. Nature. 4290: 696–699.

    Article  Google Scholar 

  • Scott, E.R.D. (1972) Chemical fractionation in iron meteorites and its interpretation. Geochim. Cosmoch. Acta. 36: 1205–1236.

    Article  Google Scholar 

  • Shatskii, G.V. (1990) Isotopic composition of sulfidic sulfur of the Zazhogin Shungite (South Karelia). Geological Institute, Academy of Sciences of the USSR, Moscow. Translated from Litologiya I Poleznye Iskopaemye 1: 20–28.

    Google Scholar 

  • Sidorenko, S.A. and Sidorenko, A.V. (1975) Organic Matter in Precambrian Sedimentary-metamorphic Rocks. Nauka, Moscow, 113 pp. (in Russian).

    Google Scholar 

  • Stankiewicz, B.A., Mastalerz, M., Kruge, M.A., van Bergen, P.F. and Sadowska, A. (1997) A comparative study of modern and fossil cone scales and seeds of conifers: a geochemical approach. New Phytol. 135: 375–393.

    Article  Google Scholar 

  • Strauss, H. and Beukes, N.J. (1996) Carbon and sulfur isotopic compositions of organic carbon and pyrite in sediments from the Transvaal Supergroup, South Africa. Precambrian Res. 79: 57–71.

    Article  Google Scholar 

  • Strauss, H., Dees Marais, D.J., Summons, R.E., and Hayes, J.M. (1992) Proterozoic organic carbon — its preservation and isotopic record. In: M. Schidlowski, S. Golubic, M.M. Kimberkey, D.M. McKirdy and P.A. Trudinger (eds), Early Organic Evolution. Springer-Verlag, Berlin, pp. 203–211.

    Chapter  Google Scholar 

  • Sudovikov, N.G. (1939) The precambrian of the Karelian Autonomous Socialistic Soviet Republic. In: V.N. Vasiliev (ed.) International Geological Congress, Report of the XVII Session, USSR 1937 6: 71–76, Moscow.

    Google Scholar 

  • Usenbaev, K., Zhumalieva, K., Ryskulbekova, R.M. and Kalinin, Yu. K. (1977) Structure of a shungite-1 mineral. Dokl. Akad. Nauk SSSR. 232: 1189–1192 (in Russian).

    Google Scholar 

  • Volkova, I.B. and Bogdanova, M.V. (1983) New plant structures in Karelian shungites. Dokl. Akad. Nauk SSSR. 270: 410–414.

    Google Scholar 

  • Volkova, I.B. and Bogdanova, M.V. (1986) Petrology and genesis of Karelian shungite — high rank coal. Int. J. Coal Geol. 6: 369–379.

    Article  Google Scholar 

  • Wang, S.H. and Griffith, P.R. (1985) Resolution enhancement of reflectance IR spectra of coals by Fourier self-deconvolution. 1. C-H stretching and bending modes. Fuel. 64: 229–236.

    Article  Google Scholar 

  • Walter, M.R. (1987) The timing of major evolutionary innovations from the origins of life to the Metaphyta and Metazoa: the geological evidence. In: K.S.W. Campbell and M.F. Day (eds), Rates of Evolution. Allen and Unwin, London, pp. 15–33.

    Google Scholar 

  • Yanagawa, H. and Kojima, K. (1985) Thermophilic microspheres of peptide-like polymers and silicates formed at 250°C. J. Biochem. 97: 1521–1524.

    Google Scholar 

  • Yi, W., Halliday, A.N., Lee, D.C. and Christensen, J.N. (1995) Indium and tin in basalts, sulphides, and the mantle. Geochim. Cosmochim. Acta. 59: 5081–5090.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mastalerz, M., Glikson, M., Stankiewicz, B.A., Volkova, I.B., Bustin, R.M. (2000). Organic and mineral matter in a Precambrian shungite deposit from Karelia, Russia. In: Glikson, M., Mastalerz, M. (eds) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9474-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9474-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4019-0

  • Online ISBN: 978-94-015-9474-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics