Skip to main content

Proterozoic Organic Carbon — Its Preservation and Isotopic Record

  • Chapter
Early Organic Evolution

Abstract

The carbon isotopic composition of Proterozoic organic matter has been studied as a function of elemental H/C ratio. Kerogen samples which have experienced various degrees of postdepositional thermal alteration show a correspondingly wide spread of δ13C values. Setting a minimum H/C threshold of 0.2 to eliminate the kerogens of highest rank immediately results in a marked contraction in the range of δ 13C. Analysis of the time-dependence of these data reveals a smooth trend of increasing δ13C from an Early Proterozoic average of — 34 %o PDB to about — 30.5%o for the Middle Proterozoic. This contrasts markedly with the record of Proterozoic carbonates, which typically average near 0%o PDB. Several explanations are offered for this trend. Firstly, a long-term decline occurred in the partial pressure of atmospheric CO2 during the Proterozoic. An accompanying development of biochemical pumps, which raise the internal CO2 concentrations of photoautotrophs and allow the maintenance of high levels of carbon fixation, would cause a partially closed system with respect to external CO2 and a reduction in 13C fractionation. Alternatively, or perhaps additionally, evolutionary pressures toward optimizing the kinetic parameters of the major carboxylating enzyme RUBISCO may have been accompanied by a reduction in the enzymic discrimination against 13C. Late Proterozoic kerogens display substantial isotopic variability. This most likely reflects secular changes in the burial rates of organic versus carbonate carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharon P, Schidlowski M, Singh IB (1987) Chronostratigraphic markers in the end-Precambrian carbon isotope record of the Lesser Himalaya. Nature (London) 327:699–701

    Article  Google Scholar 

  • Arthur MA, Dean WE. Claypool GE (1985) Anomalous 13C enrichment in modern marine organic carbon. Nature (London) 315:216–218

    Article  Google Scholar 

  • Awramik SM, Conway Morris S. Bengtson S (1986) The Precambrian-Cambrian boundary and geochemical perturbations. Nature (London) 319:696–697

    Article  Google Scholar 

  • Badger MR (1987) The CO2-concentrating mechanism in aquatic phototrophs. In: Hatch MD, Boardman NK (eds) The biochemistry of plants, vol 10. Academic Press, New York London, pp 219–274

    Google Scholar 

  • Badger MR, Andrews TJ (1987) Co-evolution of Rubisco and CO2-concentrating mechanisms. In: Biggins J (ed) Prog Photosynth Res 3: 601–609

    Google Scholar 

  • Baker AJ. Fallick AE (1989) Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old sea water. Nature (London) 337:352– 354

    Article  Google Scholar 

  • Barghoorn ES, Knoll AH, Dembicki H, Meinschein WG (1977) Variation in stable carbon isotopes in organic matter from the Gunflint Iron Formation. Geochim Cosmochim Acta 41: 425–430

    Article  Google Scholar 

  • Berner RA (1989) Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeogr Palaeoclimatol Palaeo-ecol Global Planet Change 75:97–122

    Article  Google Scholar 

  • Burwood R, Drodz RJ, Halpern HI, Sedivy RA (1988) Carbon isotopic variations of kerogen pyrolysates. Org Geochem 12: 195–205

    Article  Google Scholar 

  • Calder JA, Parker PL (1973) Geochemical implications of induced changes in 13C fractionation by blue-green algae. Geochim Cosmochim Acta 37: 133–140

    Article  Google Scholar 

  • Degens ET (1969) Biogeochemistry of stable carbon isotopes. In: Eglinton G, Murphy MTJ (eds) Organic geochemistry, Springer, Berlin Heidelberg New York, pp 304–329

    Google Scholar 

  • Deines P (1980) Isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol. 1. Elsevier, Amsterdam, pp 329–406

    Google Scholar 

  • Des Marais DJ (1985) Carbon exchange between the mantle and crust and its effect on the atmosphere. In: Sundquist ET. Broecker WS (eds) The carbon cycle and atmospheric CO2; natural variation Archean to Present. Geophysical monograph 32. Am Geophys Un, pp 602–611

    Chapter  Google Scholar 

  • Des Marais DJ, Bauld J. Risatti JB, Summons RE, Ward DM (in press) The biogeochemistry of modern microbial mats. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Univ Press, Cambridge

    Google Scholar 

  • Donnelly TH, Shergold JH, Southgate PN (1988) Anomalous geochemical signals from phosphatic Middle Cambrian rocks in the southern Georgina Basin, Australia. Sedimentology 35: 549–570

    Article  Google Scholar 

  • Durand B (ed) (1973) Kerogen: insoluble organic matter from sedimentary rocks. Technip, Paris, 519 pp

    Google Scholar 

  • Eichmann R, Schidlowski M (1975) Isotopic fractionation between coexisting organic carbon-carbonate pairs in Precambrian sediments. Geochim Cosmochim Acta 39:585–595

    Article  Google Scholar 

  • Estep MLF (1984) Carbon and hydrogen isotopic compositions of algae and bacteria from hydrothermal environments, Yellowstone National Park. Geochim Cosmochim Acta 48: 591–599

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Mol Biol 40:503–537

    Article  Google Scholar 

  • Garrels RM, Lerman A (1984) Coupling of the sedimentary sulfur and carbon cycles -an improved model. Am J Sci 284:989–1007

    Article  Google Scholar 

  • Haddad RI, Des Marais DJ, Nguyen H, Bauer J, Nguyen M (1988) Carbon isotope cycling in a recent microbial mat. EOS 69:1083–1084

    Google Scholar 

  • Hayes JM. Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Univ Press, Princeton, pp93–134

    Google Scholar 

  • Hayes JM. Popp BN. Takigiku R. Johnson MW (1989) An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn For mation. Geochim Cosmochim Acta 53:2961–2972

    Article  Google Scholar 

  • Hayes JM, Summons RE, Strauss H, Des Marais DJ (in press) Proterozoic biogeochemistry. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Univ Press, Cambridge

    Google Scholar 

  • Hoefs J, Frey M (1976) Isotopic composition of carbonaceous organic matter in a metamorphic profile from the Swiss Alps. Geochim Cosmochim Acta 40: 945–951

    Article  Google Scholar 

  • Hoering TC, Navale V (1987) A search for molecular fossils in the kerogen of Precambrian sedimentary rocks. Precambrian Res 34: 247–267

    Article  Google Scholar 

  • Holser WT (1977) Catastrophic chemical events in history of the ocean. Nature (London) 276:403–408

    Article  Google Scholar 

  • Holser WT, Magaritz M (1987) Events near the Permian-Triassic boundary. Modern Geol 11:155–180

    Google Scholar 

  • Holser WT, Schönlaub H-P, Attrep M, Boeckelmann K, Klein P, Magaritz M, Orth CJ, Fenninger A, Jenny C, Kralik M, Mauritsch H, Pak E, Schramm J-M, Stattegger K, Schmöller R (1989) A unique geochemical record at the Permian Triassic boundary. Nature (London) 337:39–44

    Article  Google Scholar 

  • Hsü KJ, Oberhänsli H, Gao JY, Sun S, Chen H, Krähenbühl U (1985) Strangelove ocean before the Cambrian explosion. Nature (London) 316:809–811

    Article  Google Scholar 

  • Jackson MJ, Powell TG, Summons RE, Sweet IP (1986) Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7×109 years. Nature (London) 322:727–729

    Article  Google Scholar 

  • Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature (London) 291 :513 -515

    Article  Google Scholar 

  • Kasting J (1987) Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res 34:305–229

    Article  Google Scholar 

  • Knoll AH, Hayes JM, Kaufman AJ, Swett K, Lambert IB (1986) Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbad and East Greenland. Nature (London) 321 :832–838

    Article  Google Scholar 

  • Lambert IB, Walter MR, Zang W, Lu S, Ma G (1987) Paleoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature (London) 325:140–142

    Article  Google Scholar 

  • Leventhal J, Suess SE, Cloud P (1975) Nonprevalence of biochemical fossils in kerogen from pre-Phanerozoic sediments. Proc Natl Acad Sci USA 72:4706–4710

    Article  Google Scholar 

  • Magaritz M (1989) 13C minima follow extinction events: A clue to faunal extinction. Geology 17: 337–340

    Article  Google Scholar 

  • Magaritz M, Holser WT, Kirschvink J (1986) Carbonisotope events across the Precambrian Cambrian boundary on the Siberian Platform. Nature (London) 320:258– 259

    Article  Google Scholar 

  • McKirdy DM, Powell TG (1974) Metamorphic alteration of carbon isotopic composition in ancient sedimentary organic matter: new evidence from Australia and South Africa. Geology 2:591–595

    Article  Google Scholar 

  • McKirdyDM, Sumartojo J, Tucker DH, Gostin V (1975) Organic, mineralogic and magnetic indicators of metamorphism in the Tapley Hill Formation, Adelaide Geo-syncline. Precambrian Res 2: 345–373

    Article  Google Scholar 

  • Mitzutani M,Wada E (1982) Effect of high atmospheric CO2 concentration on δ 13C of algae. A possible cause for the average depletion of 13C in Precambrian reduced carbon. Origins Life 12:377–390

    Article  Google Scholar 

  • Peters KE, Simoneit BRT, Brenner S, Kaplan IR (1981) Carbon and hydrogen stable isotope variations in kerogen during laboratory-simulated thermal maturation. Bull Am Assoc Petrol Geol 65: 501–508

    Google Scholar 

  • Popp BN, Anderson TF, Sandberg PA (1986) Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geol Soc Am Bull 97: 1262–1269

    Article  Google Scholar 

  • Popp BN, Takigiku R, Hayes JM, Louda JW, Baker EW (1989) The post-Paleozoic chronology and mechanism of 13C depletion in primary organic matter. Am J Sci 289:436–454

    Article  Google Scholar 

  • Powell TG, Jackson, Sweet IP, Crick IH, Boreham CJ, Summons RE (1987) Petroleum geology and geochemistry, Middle Proterozoic McArthur Basin. Bur Mineral Resour Geol Geophys Aust Record 1987/48, 286 pp

    Google Scholar 

  • Redding CE, Schoell M, Monin JC, Durand B (1980) Hydrogen and carbon isotopic composition of coals and kerogens. In: Douglas AG. Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon, Oxford, pp 711–723

    Google Scholar 

  • Roeske CA. OXeary MH (1984) Carbon isotope effects on the enzyme catalysed carboxylation of ribulose bisphosphate. Biochemistry 23: 6275–6284

    Article  Google Scholar 

  • Schidlowski M (1982) Content and isotopic composition of reduced carbon in sediments. In: Holland HD, Schidlowski M (eds) Mineral deposits and evolution of the biosphere. Springer. Berlin Heidelberg New York, pp 103–122

    Chapter  Google Scholar 

  • Schidlowski M (1987) Application of stable carbon isotopes to early biochemical evolution on Earth. Annu Rev Earth Planet Sci 15:47–72

    Article  Google Scholar 

  • Schidlowski M (1988) A 3,800-million-year old isotopic record of life from carbon in sedimentary rocks. Nature (London) 333:313–318

    Article  Google Scholar 

  • Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, nitrogen and hydrogen. In: Schopf JW (ed) Earth’s earliest biosphere; its origin and evolution. Univ Press, Princeton, pp 149–187

    Google Scholar 

  • Schidlowski M, Matzigkeit U, Krumbein WE (1984) Superheavy organic carbon from hypersaline microbial mats: assimilatory pathway and geochemical implications. Naturwissenschaften 71: 303–308

    Article  Google Scholar 

  • Schoell M, Wellmer FW (1981) Anomalous 13C depletion in early Precambrian graphites from Superior Province, Canada. Nature (London) 290:696–699

    Article  Google Scholar 

  • Sharkey TD, Berry JA (1985) Carbon isotope fractionation of algae as influenced by an inducible CO2 concentrating mechanism. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. Am Soc Plant Physiol, pp 389–401

    Google Scholar 

  • Stahl WJ (1978) Source rock-crude oil correlation by isotopic type curves. Geochim Cosmochim Acta 42: 1573–1577

    Article  Google Scholar 

  • Strauss H, Des Marais DJ, Summons RE, Hayes JM (in press) Abundance of carbon, maturity and elemental composition of kerogen. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Univ Press, Cambridge

    Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin Heidelberg New York, 699 p

    Google Scholar 

  • Tucker ME (1986) Carbon isotope excursions in Precambrian/Cambrian boundary beds, Morocco. Nature (London) 319:48–50

    Article  Google Scholar 

  • Valley JW, O’Neil JR (1981) 12C/13C exchange between calcite and graphite: a possible thermometer in Grenville marbles. Geochim Cosmochim Acta 45:411–419

    Article  Google Scholar 

  • Veizer J, Hoefs J (1976) The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40: 1387–1395

    Article  Google Scholar 

  • Veizer J, Holser WT, Wilgus CK (1980) Correlation of 13C/12C and 34S/32S secular variations. Geochim Cosmochim Acta 44: 579–587

    Article  Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Stevenson DJ, Walter MR (1983) Environmental evolution of the Archean -early Proterozoic earth. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Univ Press, Princeton, pp 260–290

    Google Scholar 

  • Wedeking KW, Hayes JM (1983) Carbonization of Precambrian kerogens. In: Bjorøy M (ed) Advances in organic geochemistry 1981. John Wiley &Sons, New York Chichester, pp 546–553

    Google Scholar 

  • ZachosJC, Arthur MA, Dean WE (1989) Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous Tertiary boundary. Nature (London) 337:61–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strauss, H., Des Marais, D.J., Hayes, J.M., Summons, R.E. (1992). Proterozoic Organic Carbon — Its Preservation and Isotopic Record. In: Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds) Early Organic Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76884-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76884-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76886-6

  • Online ISBN: 978-3-642-76884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics