Skip to main content

Novel Molecular Tools for Metabolic Engineering to Improve Microalgae-Based Biofuel Production

  • Chapter
  • First Online:
Biofuels: Greenhouse Gas Mitigation and Global Warming

Abstract

Biofuels are derived from biological material. They are an environmentally friendly, low-cost, and renewable energy source, making them potential fuels to replace nonrenewable fossil fuel. Over time, biofuel production technology/methodology has gone through several generations, from the simplest means of production (conversion of simple sugars into biofuel) to the current, more complicated means of production (using novel plant biotechnology). The next generation of biofuel production will involve genetic engineering to improve yields, especially metabolic pathway engineering. Both macroalgae and microalgae sources offer an alternative to fossil-based fuels. Single-celled microalgae use carbon dioxide and sunlight to produce energy. They provide an attractive alternative, due to the significance of their lipid yield, which can be further processed into biofuels and valuable coproducts. The use of microalgae to produce biofuels reduces overall carbon emission without taking away the lands needed for food crops. Despite vigorous research, deployment of large-scale algae-based biofuel production still faces challenges, including high demands of input (water, nutrients, CO2, etc.) for algal growth. Genetic engineering of algal metabolic pathways holds potential for generating high lipid yields with minimal input. In this chapter, we discuss the use of modern molecular tools for metabolic engineering to improve microalgae-based biofuel production. These include multiple gene transformation, site-specific gene stacking, and precise gene/allele modification with currently developed genome-editing technology, such as CRISPR/Cas9 system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aro EM (2016) From first generation biofuels to advanced solar biofuels. Ambio 45(Suppl. 1):S24–S31

    Article  Google Scholar 

  • Banerjee C, Dubey KK, Shukla P (2016) Metabolic engineering of microalgal based biofuel production: prospects and challenges. Front Microbiol 7:432

    Google Scholar 

  • Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2014) Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2:90

    Google Scholar 

  • Benvenuti G, Lamers PP, Breuer G, Bosma R, Cerar A, Wijffels RH, Barbosa MJ (2016) Microalgal TAG production strategies: why batch beats repeated-batch. Biotechnol Biofuels 9:64

    Article  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  Google Scholar 

  • Chen QJ, Zhou HM, Chen J, Wang XC (2006) A gateway-based platform for multigene plant transformation. Plant Mol Biol 62:927–936

    Article  Google Scholar 

  • Chen QJ, Xie M, Ma XX, Dong L, Chen J, Wang XC (2010) MISSA is a highly efficient in vivo DNA assembly method for plant multiple-gene transformation. Plant Physiol 153:41–51

    Article  Google Scholar 

  • Doron L, Segal N, Shapira M (2016) Transgene expression in microalgae-from tools to applications. Front Plant Sci 7:505

    Article  Google Scholar 

  • Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116

    Article  Google Scholar 

  • Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    Article  Google Scholar 

  • Hood EE (2016) Plant-based biofuels. F1000Res 5:185

    Google Scholar 

  • Hou LL, Yau YY, Wei JJ, Han ZG, Dong ZC, Ow DW (2014) An open-source system for in planta gene stacking by Bxb1 and Cre recombinases. Mol Plant 7:1756–1765

    Article  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  Google Scholar 

  • Iwai M, Hori K, Sasaki-Sekimoto Y, Shimojima M, Ohta H (2015) Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii. Front Microbiol 6:912

    Article  Google Scholar 

  • Jiang L, Yu X, Qi X, Yu Q, Deng S, Bai B, Li N, Zhang A, Zhu C, Liu B, Pang J (2013) Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res 22:1133–1142

    Article  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  Google Scholar 

  • Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506

    Article  Google Scholar 

  • Li Z, Moon BP, Xing A, Liu ZB, McCardell RP, Damude HG, Falco SC (2010) Stacking multiple transgenes at a selected genomic site via repeated recombinase-mediated DNA cassette exchanges. Plant Physiol 54:622–631

    Article  Google Scholar 

  • Li R, Han Z, Hou L, Kaur G, Qian Y, Ow DW (2016) Method for biolistic site-specific integration in plants catalyzed by Bxb1 integrase. Methods Mol Biol 1469:15–30

    Article  Google Scholar 

  • Lin L, Liu YG, Xu X, Li B (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci U S A 100:5962–5967

    Article  Google Scholar 

  • Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52:421–432

    Article  Google Scholar 

  • Nandy S, Zhao S, Pathak BP, Manoharan M, Srivastava V (2015) Gene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion. BMC Biotechnol 15:93

    Article  Google Scholar 

  • Nymark M, Sharmma AK, Sparstad T, Bones AM, Wing P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951

    Article  Google Scholar 

  • Qiu J, Gao F, Shen G, Li C, Han X, Zhao Q, Zhao D, Hua X, Pang Y (2013) Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PLoS One 8:e70665

    Article  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  Google Scholar 

  • Rulli MC, Bellomi D, Cazzoli A, De Carolis G, D’Odorico P (2016) The water-land-food nexus of first-generation biofuels. Sci Rep 6:22521

    Article  Google Scholar 

  • Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622

    Article  Google Scholar 

  • Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, Blanca J, Granell A, Orzaez D (2013) GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162:1618–1631

    Article  Google Scholar 

  • Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Kwon H, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    Article  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100:14672–14677

    Article  Google Scholar 

  • Turan S, Zehe C, Kuehle J, Qiao J, Bode J (2013) Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene 515:1–27

    Article  Google Scholar 

  • Wang Y, Yau YY, Perkins-Balding D, Thomson JG (2011) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267–285

    Article  Google Scholar 

  • Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88:1071–1081

    Article  Google Scholar 

  • Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S (2012) Fast track assembly of multigene constructs using golden gate cloning and the MoClo system. Bioeng Bugs 3:38–43

    Google Scholar 

  • Zhu C, Sanahuja G, Yuan D, Farré G, Arjó G, Berman J, Zorrilla-López U, Banakar R, Bai C, Pérez-Massot E, Bassie L, Capell T, Christou P (2013) Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 11:129–141

    Article  Google Scholar 

  • Zorrilla-López U, Masip G, Arjó G, Bai C, Banakar R, Bassie L, Berman J, Farré G, Miralpeix B, Pérez-Massot E, Sabalza M, Sanahuja G, Vamvaka E, Twyman RM, Christou P, Zhu C, Capell T (2013) Engineering metabolic pathways in plants by multigene transformation. Int J Dev Biol 57:565–576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Yeu Yau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yau, YY., Easterling, M. (2018). Novel Molecular Tools for Metabolic Engineering to Improve Microalgae-Based Biofuel Production. In: Kumar, A., Ogita, S., Yau, YY. (eds) Biofuels: Greenhouse Gas Mitigation and Global Warming. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3763-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3763-1_23

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3761-7

  • Online ISBN: 978-81-322-3763-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics