Skip to main content

Germ Cell Tumors from a Developmental Perspective: Cells of Origin, Pathogenesis, and Molecular Biology (Emerging Patterns)

  • Chapter
  • First Online:
Pathology and Biology of Human Germ Cell Tumors

Abstract

The developmental potential of seven defined types (0–VI) of germ cell tumors (GCT) is determined by the developmental state of the precursor cells from which they originate: the 2C, naïve, or primed state. These basal states are modified by epigenetic changes, particularly genomic imprinting, and by reprogramming, which is mostly due to failure of repression of pluripotency of the precursor cell. Type VI is a new category of neoplasms resembling GCT, resulting from induced pluripotency.

In agreement with the plasticity of developmental states, the same precursor cell may generate different types of GCT, and similar GCT may be derived from different precursors. Developmental plasticity also explains intermediate phenotypes between the defined types of GCT.

The anatomical distribution of extragonadal GCT favors early germ cells, in particular primordial germ cells (PGC), as their precursors.

Most GCT result from dysfunction of the niche of precursor cells; somatic mutation of precursors plays a minor role. Disturbance may be due to internal (and external) systemic factors (genvironment) that will likely affect both gonads, explaining the high incidence of bilaterality of most gonadal GCT, occasionally in combination with extragonadal GCT. Heritable niche-disturbing factors explain familial occurrence of GCT of the same and occasionally different types.

The overwhelming preponderance of gonadal and extragonadal type II GCT (seminomatous and non-seminomatous tumors) in males and 46,XY disorders of sex development are likely due to disturbance of the niche allowing co-expression of OCT4 and TSPY in delayed-matured PGC/gonocytes, giving them survival and proliferative advantage.

This review of recent and classic data on developmental biology of embryonic stem cells, the germline, and GCT provides a biologically plausible and clinically relevant unifying model for all GCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slack JM. Origin of stem cells in organogenesis. Science. 2008;322(5907):1498–1501. doi: 322/5907/1498 [pii] 10.1126/science.1162782.

  2. Wylie C. Germ cells. Cell. 1999;96(2):165–174. doi:S0092-8674(00)80557-7 [pii].

    Google Scholar 

  3. Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984;308(5959):548–50.

    Article  CAS  PubMed  Google Scholar 

  4. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37(1):179–183. doi:0092-8674(84)90313-1 [pii].

    Google Scholar 

  5. Surani MA, Barton SC, Norris ML. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell. 1986;45(1):127–136. doi:0092-8674(86)90544-1 [pii].

    Google Scholar 

  6. Gkountela S, Li Z, Vincent JJ, Zhang KX, Chen A, Pellegrini M, et al. The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation. Nat Cell Biol. 2013;15(1):113–122. doi:ncb2638 [pii] 10.1038/ncb2638.

  7. Kim S, Gunesdogan U, Zylicz JJ, Hackett JA, Cougot D, Bao S, et al. PRMT5 protects genomic integrity during global DNA demethylation in primordial germ cells and preimplantation embryos. Mol Cell. 2014;56(4):564–579. doi:S1097-2765(14)00787-4 [pii] 10.1016/j.molcel.2014.10.003.

  8. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117(1–2):15–23. doi:S0925477302001818 [pii].

    Google Scholar 

  9. Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science. 2010;329(5987):78–82. doi:329/5987/78 [pii] 10.1126/science.1187945.

  10. Morison IM, Reeve AE. A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum Mol Genet. 1998;7(10):1599–1609. doi:ddb178 [pii].

    Google Scholar 

  11. Surani MA. Reprogramming of genome function through epigenetic inheritance. Nature. 2001;414(6859):122–128. doi:10.1038/35102186 35102186 [pii].

  12. McLaren A. Primordial germ cells in the mouse. Dev Biol. 2003;262(1):1–15. doi:S0012160603002148 [pii].

    Google Scholar 

  13. Durcova-Hills G, Burgoyne P, McLaren A. Analysis of sex differences in EGC imprinting. Dev Biol. 2004;268(1):105–110. doi:10.1016/j.ydbio.2003.12.018 S0012160604000144 [pii].

  14. Morison IM, Ramsay JP, Spencer HG. A census of mammalian imprinting. Trends Genet. 2005;21(8):457–465. doi:S0168-9525(05)00166-6 [pii] 10.1016/j.tig.2005.06.008.

  15. Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur J, et al. Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics. 2009;4(4):235–240. doi:9019 [pii].

    Google Scholar 

  16. Hall JG. Genomic imprinting: review and relevance to human diseases. Am J Hum Genet. 1990;46(5):857–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Surani A, Tischler J. Stem cells: a sporadic super state. Nature. 2012;487(7405):43–45. doi:487043a [pii] 10.1038/487043a.

  18. McGrath J, Solter D. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science. 1984;226(4680):1317–9.

    Article  CAS  PubMed  Google Scholar 

  19. Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature. 2012;487(7405):57–63. doi:nature11244 [pii] 10.1038/nature11244.

  20. Hackett JA, Surani MA. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell. 2014;15(4):416–430. doi:S1934-5909(14)00406-8 [pii] 10.1016/j.stem.2014.09.015.

  21. Scholer HR, Balling R, Hatzopoulos AK, Suzuki N, Gruss P. Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J. 1989;8(9):2551–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Scholer HR, Hatzopoulos AK, Balling R, Suzuki N, Gruss P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J. 1989;8(9):2543–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ovitt CE, Scholer HR. The molecular biology of Oct-4 in the early mouse embryo. Mol Hum Reprod. 1998;4(11):1021–31.

    Article  CAS  PubMed  Google Scholar 

  24. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–391. doi:S0092-8674(00)81769-9 [pii].

    Google Scholar 

  25. Wu G, Han D, Gong Y, Sebastiano V, Gentile L, Singhal N, et al. Establishment of totipotency does not depend on Oct4A. Nat Cell Biol. 2013;15(9):1089–1097. doi:ncb2816 [pii] 10.1038/ncb2816.

  26. Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development. 1996;122(3):881–94.

    CAS  PubMed  Google Scholar 

  27. Pesce M, Wang X, Wolgemuth DJ, Scholer H. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev. 1998;71(1–2):89–98.

    Article  CAS  PubMed  Google Scholar 

  28. Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol. 2013;375(1):54–64. doi:S0012-1606(12)00674-4 [pii] 10.1016/j.ydbio.2012.12.008.

  29. Honecker F, Stoop H, de Krijger RR, Chris Lau YF, Bokemeyer C, Looijenga LH. Pathobiological implications of the expression of markers of testicular carcinoma in situ by fetal germ cells. J Pathol. 2004;203(3):849–57. doi:10.1002/path.1587.

    Article  CAS  PubMed  Google Scholar 

  30. Rajpert-De Meyts E, Hanstein R, Jorgensen N, Graem N, Vogt PH, Skakkebaek NE. Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. Hum Reprod. 2004;19(6):1338–1344. doi:10.1093/humrep/deh265 deh265 [pii].

  31. Stoop H, Honecker F, Cools M, de Krijger R, Bokemeyer C, Looijenga LH. Differentiation and development of human female germ cells during prenatal gonadogenesis: an immunohistochemical study. Hum Reprod. 2005;20(6):1466–1476. doi:deh800 [pii] 10.1093/humrep/deh800.

  32. Looijenga LH, Stoop H, de Leeuw HP, de Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 2003;63(9):2244–50.

    CAS  PubMed  Google Scholar 

  33. Stewart CL, Gadi I, Bhatt H. Stem cells from primordial germ cells can reenter the germ line. Dev Biol. 1994;161(2):626–628. doi:10.1006/dbio.1994.1058 S0012-1606(84)71058-X [pii].

  34. Aksoy I, Jauch R, Chen J, Dyla M, Divakar U, Bogu GK, et al. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J. 2013;32(7):938–953. doi:emboj201331 [pii] 10.1038/emboj.2013.31.

  35. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160(1–2):253–268. doi:S0092-8674(14)01583-9 [pii] 10.1016/j.cell.2014.12.013.

  36. Crouau-Roy B, Amadou C, Bouissou C, Clayton J, Vernet C, Ribouchon MT, et al. Localization of the OTF3 gene within the human MHC class I region by physical and meiotic mapping. Genomics. 1994;21(1):241–243. doi:S0888-7543(84)71249-3 [pii] 10.1006/geno.1994.1249.

  37. Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell. 2002;3(2):167–170. doi:S153458070200223X [pii].

    Google Scholar 

  38. Clark AT, Rodriguez RT, Bodnar MS, Abeyta MJ, Cedars MI, Turek PJ, et al. Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma. Stem Cells. 2004;22(2):169–79. doi:10.1634/stemcells.22-2-169.

    Article  CAS  PubMed  Google Scholar 

  39. Le Bin GC, Munoz-Descalzo S, Kurowski A, Leitch H, Lou X, Mansfield W, et al. Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst. Development. 2014;141(5):1001–1010. doi:dev.096875 [pii] 10.1242/dev.096875.

  40. Wu FR, Zhang Y, Ding B, Lei XH, Huang JC, Wang CH, et al. H3K27me3 may be associated with Oct4 and Sox2 in mouse preimplantation embryos. Genet Mol Res. 2014;13(4):10121–10129. doi:gmr4191 [pii] 10.4238/2014.December.4.6.

  41. Toyooka Y, Oka S, Fujimori T. Early preimplantation cells expressing Cdx2 exhibit plasticity of specification to TE and ICM lineages through positional changes. Dev Biol. 2016;411(1):50–60. doi:S0012-1606(16)30026-4 [pii] 10.1016/j.ydbio.2016.01.011.

  42. Goolam M, Scialdone A, Graham SJ, Macaulay IC, Jedrusik A, Hupalowska A, et al. Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos. Cell. 2016;165(1):61–74. doi:S0092-8674(16)30061-7 [pii] 10.1016/j.cell.2016.01.047.

  43. Niakan KK, Ji H, Maehr R, Vokes SA, Rodolfa KT, Sherwood RI, et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev. 2010;24(3):312–326. doi:24/3/312 [pii] 10.1101/gad.1833510.

  44. Seguin CA, Draper JS, Nagy A, Rossant J. Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells. Cell Stem Cell. 2008;3(2):182–195. doi:S1934-5909(08)00327-5 [pii] 10.1016/j.stem.2008.06.018.

  45. Weidgang CE, Russell R, Tata PR, Kuhl SJ, Illing A, Muller M, et al. TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports. 2013;1(3):248–265. doi:10.1016/j.stemcr.2013.08.002 S2213-6711(13)00068-4 [pii].

  46. Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature. 2002;418(6895):293–300. doi:10.1038/nature00927 nature00927 [pii].

  47. Hogan B. Developmental biology: decisions, decisions! Nature. 2002;418(6895):282–283. doi:10.1038/418282a 418282a [pii].

  48. Matsui Y, Mochizuki K. A current view of the epigenome in mouse primordial germ cells. Mol Reprod Dev. 2014;81(2):160–70. doi:10.1002/mrd.22214.

    Article  CAS  PubMed  Google Scholar 

  49. Ly L, Chan D, Trasler JM. Developmental windows of susceptibility for epigenetic inheritance through the male germline. Semin Cell Dev Biol. 2015;43:96–105. doi:S1084-9521(15)00133-0 [pii] 10.1016/j.semcdb.2015.07.006.

  50. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 2013;339(6118):448–452. doi:science.1229277 [pii] 10.1126/science.1229277.

  51. Freeman B. The active migration of germ cells in the embryos of mice and men is a myth. Reproduction. 2003;125(5):635–43.

    Article  CAS  PubMed  Google Scholar 

  52. Mamsen LS, Brochner CB, Byskov AG, Mollgard K. The migration and loss of human primordial germ stem cells from the hind gut epithelium towards the gonadal ridge. Int J Dev Biol. 2012;56(10–12):771–778. doi:120202lm [pii] 10.1387/ijdb.120202lm.

  53. Mollgard K, Jespersen A, Lutterodt MC, Yding Andersen C, Hoyer PE, Byskov AG. Human primordial germ cells migrate along nerve fibers and Schwann cells from the dorsal hind gut mesentery to the gonadal ridge. Mol Hum Reprod. 2010;16(9):621–631. doi:gaq052 [pii] 10.1093/molehr/gaq052.

  54. Teilum G. Special tumors of ovary and testis and related extragonadal lesions: comparative pathology and histological identification. Copenhagen: Munksgaard; 1976.

    Google Scholar 

  55. Gonzalez-Crussi F. Extragonadal teratomas. atlas of tumor pathology, Second Series. Armed Forces Institute of Pathology: Washington, D.C; 1982.

    Google Scholar 

  56. Oosterhuis JW, Stoop H, Honecker F, Looijenga LH. Why human extragonadal germ cell tumours occur in the midline of the body: old concepts, new perspectives. Int J Androl. 2007;30(4):256–63; discussion 263–4. doi:IJA793 [pii] 10.1111/j.1365-2605.2007.00793.x.

  57. Runyan C, Gu Y, Shoemaker A, Looijenga L, Wylie C. The distribution and behavior of extragonadal primordial germ cells in Bax mutant mice suggest a novel origin for sacrococcygeal germ cell tumors. Int J Dev Biol. 2008;52(4):333–344. doi:072486cr [pii] 10.1387/ijdb.072486cr.

  58. Upadhyay S, Zamboni L. Ectopic germ cells: natural model for the study of germ cell sexual differentiation. Proc Natl Acad Sci U S A. 1982;79(21):6584–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McLaren A. Germ cells and germ cell sex. Philos Trans R Soc Lond Ser B Biol Sci. 1995;350(1333):229–33. doi:10.1098/rstb.1995.0156.

    Article  CAS  Google Scholar 

  60. Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell. 1992;70(5):841–847. doi:0092-8674(92)90317-6 [pii].

    Google Scholar 

  61. Donovan PJ, de Miguel MP. Turning germ cells into stem cells. Curr Opin Genet Dev. 2003;13(5):463–471. doi:S0959437X03001217 [pii].

    Google Scholar 

  62. Hackett JA, Zylicz JJ, Surani MA. Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet. 2012;28(4):164–174. doi:S0168-9525(12)00014-5 [pii] 10.1016/j.tig.2012.01.005.

  63. Sterneckert J, Hoing S, Scholer HR. Concise review: Oct4 and more: the reprogramming expressway. Stem Cells. 2012;30(1):15–21. doi:10.1002/stem.765.

    Article  CAS  PubMed  Google Scholar 

  64. Irie N, Tang WW, Azim Surani M. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reprod Med Biol. 2014;13(4):203–215. doi:10.1007/s12522-014-0184-2 184 [pii].

  65. Ferrari F, Apostolou E, Park PJ, Hochedlinger K. Rearranging the chromatin for pluripotency. Cell Cycle. 2014;13(2):167–168. doi:27028 [pii] 10.4161/cc.27028.

  66. Magnusdottir E, Surani MA. How to make a primordial germ cell. Development. 2014;141(2):245–252. doi:141/2/245 [pii] 10.1242/dev.098269.

  67. Festuccia N, Osorno R, Halbritter F, Karwacki-Neisius V, Navarro P, Colby D, et al. Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells. Cell Stem Cell. 2012;11(4):477–490. doi:S1934-5909(12)00480-8 [pii] 10.1016/j.stem.2012.08.002.

  68. Kojima Y, Kaufman-Francis K, Studdert JB, Steiner KA, Power MD, Loebel DA, et al. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell. 2014;14(1):107–120. doi:S1934-5909(13)00414-1 [pii] 10.1016/j.stem.2013.09.014.

  69. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi:S0092-8674(06)00976-7 [pii] 10.1016/j.cell.2006.07.024.

  70. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. doi:S0092-8674(07)01471-7 [pii] 10.1016/j.cell.2007.11.019.

  71. Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009;136(3):411–419. doi:S0092-8674(09)00071-3 [pii] 10.1016/j.cell.2009.01.023.

  72. Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, et al. Direct reprogramming of human neural stem cells by OCT4. Nature. 2009;461(7264):649–643. doi:nature08436 [pii] 10.1038/nature08436.

  73. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298(5593):597–600. doi:10.1126/science.1072530 1072530 [pii].

  74. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 2011;8(6):633–8. doi:10.1016/j.stem.2011.05.001.

    Article  CAS  PubMed  Google Scholar 

  75. Hiura H, Toyoda M, Okae H, Sakurai M, Miyauchi N, Sato A, et al. Stability of genomic imprinting in human induced pluripotent stem cells. BMC Genet. 2013;14:32. doi:10.1186/1471-2156-14-32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stang A, Trabert B, Wentzensen N, Cook MB, Rusner C, Oosterhuis JW, et al. Gonadal and extragonadal germ cell tumours in the United States, 1973–2007. Int J Androl. 2012;35(4):616–25. doi:10.1111/j.1365-2605.2011.01245.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De Backer A. Surgical treatment and outcome of extracranial germ cell tumors in childhood [Doctoral Thesis]. Rotterdam: Erasmus University Medical Center; 2006, ISBN 90-8559-166-X.

    Google Scholar 

  78. Ozgur T, Atik E, Silfeler DB, Toprak S. Mature cystic teratomas in our series with review of the literature and retrospective analysis. Arch Gynecol Obstet. 2012;285(4):1099–101. doi:10.1007/s00404-011-2171-8.

    Article  PubMed  Google Scholar 

  79. Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F. International testicular cancer incidence trends: generational transitions in 38 countries 1900–1990. Cancer Causes Control. 2015;26(1):151–8. doi:10.1007/s10552-014-0486-z.

    Article  PubMed  Google Scholar 

  80. Stevens LC, Little CC. Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci U S A. 1954;40(11):1080–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stevens LC. A new inbred subline of mice (129-terSv) with a high incidence of spontaneous congenital testicular teratomas. J Natl Cancer Inst. 1973;50(1):235–42.

    Article  CAS  PubMed  Google Scholar 

  82. Slye M. Primary spontaneous tumors of the ovary in mice. Studies on the incidence and heritability of spontaneous tumors in mice. J Cancer Res. 1920;5:205–26.

    Google Scholar 

  83. Phillips RJ, Hulse EV. Two extragonadal teratomas in a mouse, with discussion of possible histogenesis. J Comp Pathol. 1982;92(2):273–284. doi:0021-9975(82)90086-X [pii].

    Google Scholar 

  84. Kehler J, Tolkunova E, Koschorz B, Pesce M, Gentile L, Boiani M, et al. Oct4 is required for primordial germ cell survival. EMBO Rep. 2004;5(11):1078–1083. doi:7400279 [pii] 10.1038/sj.embor.7400279.

  85. Yamaguchi S, Kurimoto K, Yabuta Y, Sasaki H, Nakatsuji N, Saitou M, et al. Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells. Development. 2009;136(23):4011–4020. doi:136/23/4011 [pii] 10.1242/dev.041160.

  86. Oosterhuis JW, Looijenga LH. Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer. 2005;5(3):210–222. doi:nrc1568 [pii] 10.1038/nrc1568.

  87. Rijlaarsdam MA, Tax DM, Gillis AJ, Dorssers LC, Koestler DC, de Ridder J, et al. Genome wide DNA methylation profiles provide clues to the origin and pathogenesis of germ cell tumors. PLoS One. 2015;10(4):e0122146. doi:10.1371/journal.pone.0122146 PONE-D-14-41158 [pii].

  88. Grant P, Pearn JH. Foetus-in-foetu. Med J Aust. 1969;1(20):1016–9.

    CAS  PubMed  Google Scholar 

  89. Willis RA. The borderland of embryology and pathology. Bull N Y Acad Med. 1950;26(7):440–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Griscom NT. The Roentgenology of Neonatal Abdominal Masses. Am J Roentgenol Radium Therapy, Nucl Med. 1965;93:447–63.

    CAS  Google Scholar 

  91. Du Plessis JP, Winship WS, Kirstein JD. Fetus in fetu and teratoma. A case report and review. S Afr Med J. 1974;48(50):2119–22.

    CAS  PubMed  Google Scholar 

  92. Hopkins KL, Dickson PK, Ball TI, Ricketts RR, O’Shea PA, Abramowsky CR. Fetus-in-fetu with malignant recurrence. J Pediatr Surg. 1997;32(10):1476–1479. doi:S0022-3468(97)90567-4 [pii].

    Google Scholar 

  93. Khadaroo RG, Evans MG, Honore LH, Bhargava R, Phillipos E. Fetus-in-fetu presenting as cystic meconium peritonitis: diagnosis, pathology, and surgical management. J Pediatr Surg. 2000;35(5):721–723. doi:S0022-3468(00)48690-2 [pii] 10.1053/jpsu.2000.6037.

  94. Isaacs H, Jr. Perinatal (fetal and neonatal) germ cell tumors. J Pediatr Surg. 2004;39(7):1003–1013. doi:S002234680400199X [pii].

    Google Scholar 

  95. Hoeffel CC, Nguyen KQ, Phan HT, Truong NH, Nguyen TS, Tran TT, et al. Fetus in fetu: a case report and literature review. Pediatrics. 2000;105(6):1335–44.

    Article  CAS  PubMed  Google Scholar 

  96. Spencer R. Parasitic conjoined twins: external, internal (fetuses in fetu and teratomas), and detached (acardiacs). Clin Anat. 2001;14(6):428–444. doi:10.1002/ca.1079 [pii] 10.1002/ca.1079.

  97. Brand A, Alves MC, Saraiva C, Loio P, Goulao J, Malta J, et al. Fetus in fetu – diagnostic criteria and differential diagnosis – a case report and literature review. J Pediatr Surg. 2004;39(4):616–618. doi:S002234680300959X [pii].

    Google Scholar 

  98. de Lagausie P, de Napoli Cocci S, Stempfle N, Truong QD, Vuillard E, Ferkadji L, et al. Highly differentiated teratoma and fetus-in-fetu: a single pathology? J Pediatr Surg. 1997;32(1):115–116. doi:S0022-3468(97)90112-3 [pii].

    Google Scholar 

  99. Heifetz SA, Alrabeeah A, Brown BS, Lau H. Fetus in fetu: a fetiform teratoma. Pediatr Pathol. 1988;8(2):215–26.

    Article  CAS  PubMed  Google Scholar 

  100. Plattner G, Oxorn H. Familial incidence of ovarian dermoid cysts. Can Med Assoc J. 1973;108(7):892–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Feld D, Labes J, Nathanson M. Bilateral ovarian dermoid cysts in triplets. Obstet Gynecol. 1966;27(4):525–8.

    Article  CAS  PubMed  Google Scholar 

  102. Beutel K, Partsch CJ, Janig U, Nikischin W, Suttorp M. Oral mature teratoma containing epididymal tissue in a female neonate. Lancet. 2001;357(9252):283–284. doi:S0140-6736(00)03620-5 [pii] 10.1016/S0140-6736(00)03620-5.

  103. Dehner LP. Gonadal and extragonadal germ cell neoplasia of childhood. Hum Pathol. 1983;14(6):493–511.

    Article  CAS  PubMed  Google Scholar 

  104. Tapper D, Lack EE. Teratomas in infancy and childhood. A 54-year experience at the Children’s Hospital Medical Center. Ann Surg. 1983;198(3):398–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hawkins EP. Pathology of germ cell tumors in children. Crit Rev Oncol Hematol. 1990;10(2):165–179. doi:1040-8428(90)90005-D [pii].

    Google Scholar 

  106. Heifetz SA, Cushing B, Giller R, Shuster JJ, Stolar CJ, Vinocur CD, et al. Immature teratomas in children: pathologic considerations: a report from the combined Pediatric Oncology Group/Children’s Cancer Group. Am J Surg Pathol. 1998;22(9):1115–24.

    Article  CAS  PubMed  Google Scholar 

  107. Schneider DT, Calaminus G, Koch S, Teske C, Schmidt P, Haas RJ, et al. Epidemiologic analysis of 1,442 children and adolescents registered in the German germ cell tumor protocols. Pediatr Blood Cancer. 2004;42(2):169–75. doi:10.1002/pbc.10321.

    Article  PubMed  Google Scholar 

  108. McKenney JK, Heerema-McKenney A, Rouse RV. Extragonadal germ cell tumors: a review with emphasis on pathologic features, clinical prognostic variables, and differential diagnostic considerations. Adv Anat Pathol. 2007;14(2):69–92. doi:10.1097/PAP.0b013e31803240e6 00125480-200703000-00002 [pii].

  109. De Backer A, Madern GC, Pieters R, Haentjens P, Hakvoort-Cammel FG, Oosterhuis JW, et al. Influence of tumor site and histology on long-term survival in 193 children with extracranial germ cell tumors. Eur J Pediatr Surg. 2008;18(1):1–6. doi:10.1055/s-2007-989399.

    Article  CAS  PubMed  Google Scholar 

  110. Hawkins E, Issacs H, Cushing B, Rogers P. Occult malignancy in neonatal sacrococcygeal teratomas. A report from a Combined Pediatric Oncology Group and Children’s Cancer Group study. Am J Pediatr Hematol Oncol. 1993;15(4):406–9.

    CAS  PubMed  Google Scholar 

  111. Baker BA, Frickey L, Yu IT, Hawkins EP, Cushing B, Perlman EJ. DNA content of ovarian immature teratomas and malignant germ cell tumors. Gynecol Oncol. 1998;71(1):14–18. doi:S0090-8258(98)95102-2 [pii] 10.1006/gyno.1998.5102.

  112. Rescorla FJ, Sawin RS, Coran AG, Dillon PW, Azizkhan RG. Long-term outcome for infants and children with sacrococcygeal teratoma: a report from the Childrens Cancer Group. J Pediatr Surg. 1998;33(2):171–176. doi:S0022-3468(98)90426-2 [pii].

    Google Scholar 

  113. Heerema-McKenney A, Harrison MR, Bratton B, Farrell J, Zaloudek C. Congenital teratoma: a clinicopathologic study of 22 fetal and neonatal tumors. Am J Surg Pathol. 2005;29(1):29–38. doi:00000478-200501000-00004 [pii].

    Google Scholar 

  114. Frazier AL, Weldon C, Amatruda J. Fetal and neonatal germ cell tumors. Semin Fetal Neonatal Med. 2012;17(4):222–230. doi:S1744-165X(12)00059-5 [pii] 10.1016/j.siny.2012.05.004.

  115. Isaacs H, Jr. I. Perinatal brain tumors: a review of 250 cases. Pediatr Neurol. 2002;27(4):249–261. doi:S0887899402004721 [pii].

    Google Scholar 

  116. Blohm ME, Gobel U. Unexplained anaemia and failure to thrive as initial symptoms of infantile choriocarcinoma: a review. Eur J Pediatr. 2004;163(1):1–6. doi:10.1007/s00431-003-1361-1.

    Article  PubMed  Google Scholar 

  117. McNally OM, Tran M, Fortune D, Quinn MA. Successful treatment of mother and baby with metastatic choriocarcinoma. Int J Gynecol Cancer. 2002;12(4):394–398. doi:ijg01125 [pii].

    Google Scholar 

  118. Ngan KW, Jung SM, Lee LY, Chuang WY, Yeh CJ, Hsieh YY. Immunohistochemical expression of OCT4 in primary central nervous system germ cell tumours. J Clin Neurosci. 2008;15(2):149–152. doi:S0967-5868(07)00017-3 [pii] 10.1016/j.jocn.2006.08.013.

  119. Abiko K, Mandai M, Hamanishi J, Matsumura N, Baba T, Horiuchi A, et al. Oct4 expression in immature teratoma of the ovary: relevance to histologic grade and degree of differentiation. Am J Surg Pathol. 2010;34(12):1842–1848. doi:10.1097/PAS.0b013e3181fcd707 00000478-201012000-00012 [pii].

  120. Oosterhuis JW, Stoop JA, Rijlaarsdam MA, Biermann K, Smit VT, Hersmus R, et al. Pediatric germ cell tumors presenting beyond childhood? Andrology. 2015;3(1):70–7. doi:10.1111/andr.305.

    Article  CAS  PubMed  Google Scholar 

  121. Herszfeld D, Wolvetang E, Langton-Bunker E, Chung TL, Filipczyk AA, Houssami S, et al. CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol. 2006;24(3):351–357. doi:nbt1197 [pii] 10.1038/nbt1197.

  122. Chang MC, Vargas SO, Hornick JL, Hirsch MS, Crum CP, Nucci MR. Embryonic stem cell transcription factors and D2-40 (podoplanin) as diagnostic immunohistochemical markers in ovarian germ cell tumors. Int J Gynecol Pathol. 2009;28(4):347–55. doi:10.1097/PGP.0b013e318195da86.

    Article  CAS  PubMed  Google Scholar 

  123. Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet. 2008;9(2):129–140. doi: nrg2295 [pii] 10.1038/nrg2295.

  124. Yokomizo S, Tsujimura A, Nonomura N, Kirime S, Takahara S, Okuyama A. Metachronous bilateral testicular tumors in a child. J Urol. 2001;166(6):2341. doi:S0022-5347(05)65584-X [pii].

    Google Scholar 

  125. Abell MR, Holtz F. Testicular neoplasms in infants and children. I. Tumors of germ cell origin. Cancer. 1963;16:965–81.

    Article  CAS  PubMed  Google Scholar 

  126. Carney JA, Kelalis PP, Lynn HB. Bilateral teratoma of testis in an infant. J Pediatr Surg. 1973;8(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  127. Gustavson KH, Gamstorp I, Meurling S. Bilateral teratoma of testis in two brothers with 47, XXY Klinefelter’s syndrome. Clin Genet. 1975;8(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  128. Kurman RJ, Norris HJ. Endodermal sinus tumor of the ovary: a clinical and pathologic analysis of 71 cases. Cancer. 1976;38(6):2404–19.

    Article  CAS  PubMed  Google Scholar 

  129. Gershenson DM. Management of ovarian germ cell tumors. J Clin Oncol. 2007;25(20):2938–2943. doi:25/20/2938 [pii] 10.1200/JCO.2007.10.8738.

  130. Yanai-Inbar I, Scully RE. Relation of ovarian dermoid cysts and immature teratomas: an analysis of 350 cases of immature teratoma and 10 cases of dermoid cyst with microscopic foci of immature tissue. Int J Gynecol Pathol. 1987;6(3):203–12.

    Article  CAS  PubMed  Google Scholar 

  131. Mahdi H, Kumar S, Seward S, Semaan A, Batchu R, Lockhart D, et al. Prognostic impact of laterality in malignant ovarian germ cell tumors. Int J Gynecol Cancer. 2011;21(2):257–262. doi:10.1097/IGC.0b013e31820581e5 00009577-201102000-00011 [pii].

  132. Isaacs Jr H. Fetal intracranial teratoma. A review. Fetal Pediatr Pathol. 2014;33(5–6):289–92. doi:10.3109/15513815.2014.969558.

    Article  PubMed  Google Scholar 

  133. Anteby EY, Ron M, Revel A, Shimonovitz S, Ariel I, Hurwitz A. Germ cell tumors of the ovary arising after dermoid cyst resection: a long-term follow-up study. Obstet Gynecol. 1994;83(4):605–8.

    Article  CAS  PubMed  Google Scholar 

  134. Kim R, Bohm-Velez M. Familial ovarian dermoids. J Ultrasound Med. 1994;13(3):225–8.

    Article  CAS  PubMed  Google Scholar 

  135. Nezhat C, Kotikela S, Mann A, Hajhosseini B, Veeraswamy A, Lewis M. Familial cystic teratomas: four case reports and review of the literature. J Minim Invasive Gynecol. 2010;17(6):782–786. doi:S1553-4650(10)00333-X [pii] 10.1016/j.jmig.2010.06.006.

  136. Poremba C, Dockhorn-Dworniczak B, Merritt V, Li CY, Heidl G, Tauber PF, et al. Immature teratomas of different origin carried by a pregnant mother and her fetus. Diagn Mol Pathol. 1993;2(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  137. Giambartolomei C, Mueller CM, Greene MH, Korde LA. A mini-review of familial ovarian germ cell tumors: an additional manifestation of the familial testicular germ cell tumor syndrome. Cancer Epidemiol. 2009;33(1):31–36. doi:S1877-7821(09)00038-1 [pii] 10.1016/j.canep.2009.04.015.

  138. Barksdale Jr EM, Obokhare I. Teratomas in infants and children. Curr Opin Pediatr. 2009;21(3):344–9. doi:10.1097/MOP.0b013e32832b41ee.

    Article  PubMed  Google Scholar 

  139. Tan C, Scotting PJ. Stem cell research points the way to the cell of origin for intracranial germ cell tumours. J Pathol. 2013;229(1):4–11. doi:10.1002/path.4098.

    Article  CAS  PubMed  Google Scholar 

  140. Perlman EJ, Valentine MB, Griffin CA, Look AT. Deletion of 1p36 in childhood endodermal sinus tumors by two-color fluorescence in situ hybridization: a pediatric oncology group study. Genes Chromosomes Cancer. 1996;16(1):15–20. doi:10.1002/(SICI)1098-2264(199605)16:1<15::AID-GCC2>3.0.CO;2-6 [pii] 10.1002/(SICI)1098-2264(199605)16:1<15::AID-GCC2>3.0.CO;2-6.

    Google Scholar 

  141. Bussey KJ, Lawce HJ, Olson SB, Arthur DC, Kalousek DK, Krailo M, et al. Chromosome abnormalities of eighty-one pediatric germ cell tumors: sex-, age-, site-, and histopathology-related differences – a Children’s Cancer Group study. Genes Chromosomes Cancer. 1999;25(2):134–146. doi:10.1002/(SICI)1098-2264(199906)25:2<134::AID-GCC9>3.0.CO;2-Y [pii].

    Google Scholar 

  142. Perlman EJ, Hu J, Ho D, Cushing B, Lauer S, Castleberry RP. Genetic analysis of childhood endodermal sinus tumors by comparative genomic hybridization. J Pediatr Hematol Oncol. 2000;22(2):100–5.

    Article  CAS  PubMed  Google Scholar 

  143. Mostert M, Rosenberg C, Stoop H, Schuyer M, Timmer A, Oosterhuis W, et al. Comparative genomic and in situ hybridization of germ cell tumors of the infantile testis. Lab Investig. 2000;80(7):1055–64.

    Article  CAS  PubMed  Google Scholar 

  144. Schneider DT, Schuster AE, Fritsch MK, Hu J, Olson T, Lauer S, et al. Multipoint imprinting analysis indicates a common precursor cell for gonadal and nongonadal pediatric germ cell tumors. Cancer Res. 2001;61(19):7268–76.

    CAS  PubMed  Google Scholar 

  145. van Echten J, Timmer A, van der Veen AY, Molenaar WM, de Jong B. Infantile and adult testicular germ cell tumors. a different pathogenesis? Cancer Genet Cytogenet. 2002;135(1):57–62. doi:S0165460801006434 [pii].

    Google Scholar 

  146. Veltman IM, Schepens MT, Looijenga LH, Strong LC, van Kessel AG. Germ cell tumours in neonates and infants: a distinct subgroup? APMIS. 2003;111(1):152–160; discussion 60. doi:apm1110119 [pii].

    Google Scholar 

  147. Veltman I, Veltman J, Janssen I, Hulsbergen-van de Kaa C, Oosterhuis W, Schneider D, et al. Identification of recurrent chromosomal aberrations in germ cell tumors of neonates and infants using genomewide array-based comparative genomic hybridization. Genes Chromosomes Cancer. 2005;43(4):367–376. doi:10.1002/gcc.20208.

  148. Zahn S, Sievers S, Alemazkour K, Orb S, Harms D, Schulz WA, et al. Imbalances of chromosome arm 1p in pediatric and adult germ cell tumors are caused by true allelic loss: a combined comparative genomic hybridization and microsatellite analysis. Genes Chromosomes Cancer. 2006;45(11):995–1006. doi:10.1002/gcc.20363.

    Article  CAS  PubMed  Google Scholar 

  149. Harms D, Zahn S, Gobel U, Schneider DT. Pathology and molecular biology of teratomas in childhood and adolescence. Klin Padiatr. 2006;218(6):296–302. doi:10.1055/s-2006-942271.

    Article  CAS  PubMed  Google Scholar 

  150. Palmer RD, Foster NA, Vowler SL, Roberts I, Thornton CM, Hale JP, et al. Malignant germ cell tumours of childhood: new associations of genomic imbalance. Br J Cancer. 2007;96(4):667–676. doi:6603602 [pii] 10.1038/sj.bjc.6603602.

  151. Mosbech CH, Rechnitzer C, Brok JS, Rajpert-De Meyts E, Hoei-Hansen CE. Recent advances in understanding the etiology and pathogenesis of pediatric germ cell tumors. J Pediatr Hematol Oncol. 2014;36(4):263–70. doi:10.1097/MPH.0000000000000125.

    Article  CAS  PubMed  Google Scholar 

  152. Looijenga LH, Rosenberg C, van Gurp RJ, Geelen E, van Echten-Arends J, de Jong B, et al. Comparative genomic hybridization of microdissected samples from different stages in the development of a seminoma and a non-seminoma. J Pathol. 2000;191(2):187–192. doi:10.1002/(SICI)1096-9896(200006)191:2<187::AID-PATH584>3.0.CO;2-T [pii] 10.1002/(SICI)1096-9896(200006)191:2<187::AID-PATH584>3.0.CO;2-T.

    Google Scholar 

  153. Fujita T, Igarashi J, Okawa ER, Gotoh T, Manne J, Kolla V, et al. CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J Natl Cancer Inst. 2008;100(13):940–949. doi:djn176 [pii] 10.1093/jnci/djn176.

  154. Veltman I, van Asseldonk M, Schepens M, Stoop H, Looijenga L, Wouters C, et al. A novel case of infantile sacral teratoma and a constitutional t(12;15)(q13;q25) pat. Cancer Genet Cytogenet. 2002;136(1):17–22. doi:S0165460801006665 [pii].

    Google Scholar 

  155. Veltman IM, Vreede LA, Cheng J, Looijenga LH, Janssen B, Schoenmakers EF, et al. Fusion of the SUMO/Sentrin-specific protease 1 gene SENP1 and the embryonic polarity-related mesoderm development gene MESDC2 in a patient with an infantile teratoma and a constitutional t(12;15)(q13;q25). Hum Mol Genet. 2005;14(14):1955–1963. doi:ddi200 [pii] 10.1093/hmg/ddi200.

  156. Jin Y, Mertens F, Kullendorff CM, Panagopoulos I. Fusion of the tumor-suppressor gene CHEK2 and the gene for the regulatory subunit B of protein phosphatase 2 PPP2R2A in childhood teratoma. Neoplasia. 2006;8(5):413–8. doi:10.1593/neo.06139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, et al. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature. 1995;374(6524):736–9. doi:10.1038/374736a0.

    Article  CAS  PubMed  Google Scholar 

  158. Poynter JN, Hooten AJ, Frazier AL, Ross JA. Associations between variants in KITLG, SPRY4, BAK1, and DMRT1 and pediatric germ cell tumors. Genes Chromosomes Cancer. 2012;51(3):266–71. doi:10.1002/gcc.20951.

    Article  CAS  PubMed  Google Scholar 

  159. Fritsch MK, Schneider DT, Schuster AE, Murdoch FE, Perlman EJ. Activation of Wnt/beta-catenin signaling in distinct histologic subtypes of human germ cell tumors. Pediatr Dev Pathol. 2006;9(2):115–31. doi:10.2350/08-05-0097.1.

    Article  CAS  PubMed  Google Scholar 

  160. Fustino N, Rakheja D, Ateek CS, Neumann JC, Amatruda JF. Bone morphogenetic protein signalling activity distinguishes histological subsets of paediatric germ cell tumours. Int J Androl. 2011;34(4 Pt 2):e218–33. doi:10.1111/j.1365-2605.2011.01186.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Alagaratnam S, Lind GE, Kraggerud SM, Lothe RA, Skotheim RI. The testicular germ cell tumour transcriptome. Int J Androl. 2011;34(4 Pt 2):e133–e150; discussion e50–1. doi:10.1111/j.1365-2605.2011.01169.x.

  162. Okpanyi V, Schneider DT, Zahn S, Sievers S, Calaminus G, Nicholson JC, et al. Analysis of the adenomatous polyposis coli (APC) gene in childhood and adolescent germ cell tumors. Pediatr Blood Cancer. 2011;56(3):384–91. doi:10.1002/pbc.22669.

    Article  PubMed  Google Scholar 

  163. Palmer RD, Murray MJ, Saini HK, van Dongen S, Abreu-Goodger C, Muralidhar B, et al. Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res. 2010;70(7):2911–2923. doi:0008-5472.CAN-09-3301 [pii] 10.1158/0008-5472.CAN-09-3301.

  164. Bussey KJ, Lawce HJ, Himoe E, Shu XO, Heerema NA, Perlman EJ, et al. SNRPN methylation patterns in germ cell tumors as a reflection of primordial germ cell development. Genes Chromosomes Cancer. 2001;32(4):342–352. doi:10.1002/gcc.1199 [pii].

  165. Schneider DT, Schuster AE, Fritsch MK, Calaminus G, Gobel U, Harms D, et al. Genetic analysis of mediastinal nonseminomatous germ cell tumors in children and adolescents. Genes Chromosomes Cancer. 2002;34(1):115–125. doi:10.1002/gcc.10053 [pii].

  166. Sievers S, Alemazkour K, Zahn S, Perlman EJ, Gillis AJ, Looijenga LH, et al. IGF2/H19 imprinting analysis of human germ cell tumors (GCTs) using the methylation-sensitive single-nucleotide primer extension method reflects the origin of GCTs in different stages of primordial germ cell development. Genes Chromosomes Cancer. 2005;44(3):256–64. doi:10.1002/gcc.20237.

    Article  CAS  PubMed  Google Scholar 

  167. Rijlaarsdam MA, Looijenga LH. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol. 2014;29:59–74. doi:S1044-579X(14)00091-1 [pii] 10.1016/j.semcancer.2014.07.003.

  168. Scotting PJ. Are cranial germ cell tumours really tumours of germ cells? Neuropathol Appl Neurobiol. 2006;32(6):569–574. doi:NAN797 [pii] 10.1111/j.1365-2990.2006.00797.x.

  169. Lee SH, Appleby V, Jeyapalan JN, Palmer RD, Nicholson JC, Sottile V, et al. Variable methylation of the imprinted gene, SNRPN, supports a relationship between intracranial germ cell tumours and neural stem cells. J Neuro Oncol. 2011;101(3):419–28. doi:10.1007/s11060-010-0275-9.

    Article  CAS  Google Scholar 

  170. Yang J, Cai J, Zhang Y, Wang X, Li W, Xu J, et al. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J Biol Chem. 2010;285(51):40303–40311. doi:M110.183392 [pii] 10.1074/jbc.M110.183392.

  171. Stevens LC. Experimental production of testicular teratomas in mice. Proc Natl Acad Sci U S A. 1964;52:654–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Stevens LC, Varnum DS. The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev Biol. 1974;37(2):369–380. doi:0012-1606(74)90155-9 [pii].

    Google Scholar 

  173. Stevens LC. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol. 1970;21(3):364–382. doi:0012-1606(70)90130-2 [pii].

    Google Scholar 

  174. Damjanov I, Solter D. Experimental teratoma. Curr Top Pathol. 1974;59:69–130.

    Article  CAS  PubMed  Google Scholar 

  175. Dunn TB, Andervont HB. Histology of some neoplasms and non-neoplastic lesions found in wild mice maintained under laboratory conditions. J Natl Cancer Inst. 1963;31:873–901.

    CAS  PubMed  Google Scholar 

  176. Artzt K, Damjanov I. Spontaneous extragonadal teratocarcinoma in a mouse. Lab Anim Sci. 1978;28(5):584–6.

    CAS  PubMed  Google Scholar 

  177. van Berlo RJ, Oosterhuis JW, Schrijnemakers E, Schoots CJ, de Jong B, Damjanov I. Yolk-sac carcinoma develops spontaneously as a late occurrence in slow-growing teratoid tumors produced from transplanted 7-day mouse embryos. Int J Cancer. 1990;45(1):153–5.

    Article  PubMed  Google Scholar 

  178. van Berlo RJ, de Jong B, Oosterhuis JW, Dijkhuizen T, Buist J, Dam A. Cytogenetic analysis of murine embryo-derived tumors. Cancer Res. 1990;50(11):3416–21.

    PubMed  Google Scholar 

  179. Eakin GS, Behringer RR. Tetraploid development in the mouse. Dev Dyn. 2003;228(4):751–66. doi:10.1002/dvdy.10363.

    Article  PubMed  Google Scholar 

  180. Eakin GS, Hadjantonakis AK, Papaioannou VE, Behringer RR. Developmental potential and behavior of tetraploid cells in the mouse embryo. Dev Biol. 2005;288(1):150–159. doi:S0012-1606(05)00635-4 [pii] 10.1016/j.ydbio.2005.09.028.

  181. Walt H, Oosterhuis JW, Stevens LC. Experimental testicular germ cell tumorigenesis in mouse strains with and without spontaneous tumours differs from development of germ cell tumours of the adult human testis. Int J Androl. 1993;16(4):267–71.

    Article  CAS  PubMed  Google Scholar 

  182. Gu KL, Zhang Q, Yan Y, Li TT, Duan FF, Hao J, et al. Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Res. 2016;26(3):350–366. doi:cr20162 [pii] 10.1038/cr.2016.2.

  183. Stevens LC. Testicular teratomas in fetal mice. J Natl Cancer Inst. 1962;28:247–67.

    CAS  PubMed  Google Scholar 

  184. Damjanov I, Solter D. Animal model of human disease: teratoma and teratocarcinoma. Am J Pathol. 1976;83(1):241–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Heaney JD, Lam MY, Michelson MV, Nadeau JH. Loss of the transmembrane but not the soluble kit ligand isoform increases testicular germ cell tumor susceptibility in mice. Cancer Res. 2008;68(13):5193–5197. doi:68/13/5193 [pii] 10.1158/0008-5472.CAN-08-0779.

  186. Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005;436(7048):207–213. doi:nature03813 [pii] 10.1038/nature03813.

  187. Magnusdottir E, Dietmann S, Murakami K, Gunesdogan U, Tang F, Bao S, et al. A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat Cell Biol. 2013;15(8):905–915. doi:ncb2798 [pii] 10.1038/ncb2798.

  188. Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M. Induction of mouse germ-cell fate by transcription factors in vitro. Nature. 2013;501(7466):222–226. doi:nature12417 [pii] 10.1038/nature12417.

  189. Krentz AD, Murphy MW, Kim S, Cook MS, Capel B, Zhu R, et al. The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc Natl Acad Sci U S A. 2009;106(52):22323–22328. doi:0905431106 [pii] 10.1073/pnas.0905431106.

  190. Youngren KK, Coveney D, Peng X, Bhattacharya C, Schmidt LS, Nickerson ML, et al. The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature. 2005;435(7040):360–364. doi:nature03595 [pii] 10.1038/nature03595.

  191. Papaioannou VE, McBurney MW, Gardner RL, Evans MJ. Fate of teratocarcinoma cells injected into early mouse embryos. Nature. 1975;258(5530):70–3.

    Article  CAS  PubMed  Google Scholar 

  192. Yoshinaga K, Nishikawa S, Ogawa M, Hayashi S, Kunisada T, Fujimoto T, et al. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development. 1991;113(2):689–99.

    CAS  PubMed  Google Scholar 

  193. Noguchi T, Noguchi M. A recessive mutation (ter) causing germ cell deficiency and a high incidence of congenital testicular teratomas in 129/Sv-ter mice. J Natl Cancer Inst. 1985;75(2):385–92.

    CAS  PubMed  Google Scholar 

  194. Bhattacharya C, Aggarwal S, Zhu R, Kumar M, Zhao M, Meistrich ML, et al. The mouse dead-end gene isoform alpha is necessary for germ cell and embryonic viability. Biochem Biophys Res Commun. 2007;355(1):194–199. doi:S0006-291X(07)00186-6 [pii] 10.1016/j.bbrc.2007.01.138.

  195. Rapley EA, Turnbull C, Al Olama AA, Dermitzakis ET, Linger R, Huddart RA, et al. A genome-wide association study of testicular germ cell tumor. Nat Genet. 2009;41(7):807–810. doi:ng.394 [pii] 10.1038/ng.394.

  196. Kanetsky PA, Mitra N, Vardhanabhuti S, Li M, Vaughn DJ, Letrero R, et al. Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet. 2009;41(7):811–815. doi:ng.393 [pii] 10.1038/ng.393.

  197. Wang L, Yamaguchi S, Burstein MD, Terashima K, Chang K, Ng HK, et al. Novel somatic and germline mutations in intracranial germ cell tumours. Nature. 2014;511(7508):241–245. doi:nature13296 [pii] 10.1038/nature13296.

  198. De Backer A, Madern GC, Hakvoort-Cammel FG, Haentjens P, Oosterhuis JW, Hazebroek FW. Study of the factors associated with recurrence in children with sacrococcygeal teratoma. J Pediatr Surg. 2006;41(1):173–181; discussion -81. doi:S0022-3468(05)00763-3 [pii] 10.1016/j.jpedsurg.2005.10.022.

  199. Derikx JP, De Backer A, van de Schoot L, Aronson DC, de Langen ZJ, van den Hoonaard TL, et al. Factors associated with recurrence and metastasis in sacrococcygeal teratoma. Br J Surg. 2006;93(12):1543–8. doi:10.1002/bjs.5379.

    Article  CAS  PubMed  Google Scholar 

  200. Fraumeni Jr JF, Li FP, Dalager N. Teratomas in children: epidemiologic features. J Natl Cancer Inst. 1973;51(5):1425–30.

    Article  PubMed  Google Scholar 

  201. Altman RP, Randolph JG, Lilly JR. Sacrococcygeal teratoma: American Academy of Pediatrics Surgical Section Survey-1973. J Pediatr Surg. 1974;9(3):389–98.

    Article  CAS  PubMed  Google Scholar 

  202. Noseworthy J, Lack EE, Kozakewich HP, Vawter GF, Welch KJ. Sacrococcygeal germ cell tumors in childhood: an updated experience with 118 patients. J Pediatr Surg. 1981;16(3):358–364. doi:S0022346881000626 [pii].

    Google Scholar 

  203. Ward SP, Dehner LP. Sacrococcygeal teratoma with nephroblastoma (Wilm’s tumor): a variant of extragonadal teratoma in childhood. A histologic and ultrastructural study. Cancer. 1974;33(5):1355–63.

    Article  CAS  PubMed  Google Scholar 

  204. Biskup W, Calaminus G, Schneider DT, Leuschner I, Gobel U. Teratoma with malignant transformation: experiences of the cooperative GPOH protocols MAKEI 83/86/89/96. Klin Padiatr. 2006;218(6):303–8. doi:10.1055/s-2006-942272.

    Article  CAS  PubMed  Google Scholar 

  205. Miles RM, Stewart Jr GS. Sacrococcygeal teratomas in adult. Ann Surg. 1974;179(5):676–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Willis R. The borderland of embryology and pathology. 2 ed. London: Butterworths; 1962.

    Google Scholar 

  207. Oosterhuis JW, Van Berlo RJ, De Jong B, Dam A, Buist J, Tamminga R, et al. Sacral teratoma with late recurrence of yolk sac tumor: human counterpart of embryo or yolk sac derived teratoma? J Urol Pathol. 1993;1:257–67.

    Google Scholar 

  208. Chen YH, Chang CH, Chen KC, Diau GY, Loh IW, Chu CC. Malignant transformation of a well-organized sacrococcygeal fetiform teratoma in a newborn male. J Formos Med Assoc. 2007;106(5):400–402. doi:S0929-6646(09)60326-0 [pii] 10.1016/S0929-6646(09)60326-0.

  209. Billmire DF, Grosfeld JL. Teratomas in childhood: analysis of 142 cases. J Pediatr Surg. 1986;21(6):548–551. doi:S0022346886002014 [pii].

    Google Scholar 

  210. De Backer A, Madern GC, Hazebroek FW. Retroperitoneal germ cell tumors: a clinical study of 12 patients. J Pediatr Surg. 2005;40(9):1475–1481. doi:S0022-3468(05)00424-0 [pii] 10.1016/j.jpedsurg.2005.05.048.

  211. Daugaard G, von der Maase H, Olsen J, Rorth M, Skakkebaek NE. Carcinoma-in-situ testis in patients with assumed extragonadal germ-cell tumours. Lancet. 1987;2(8558):528–530. doi:S0140-6736(87)92922-9 [pii].

    Google Scholar 

  212. Hailemariam S, Engeler DS, Bannwart F, Amin MB. Primary mediastinal germ cell tumor with intratubular germ cell neoplasia of the testis – further support for germ cell origin of these tumors: a case report. Cancer. 1997;79(5):1031–1036. doi:10.1002/(SICI)1097-0142(19970301)79:5<1031::AID-CNCR21>3.0.CO;2-1 [pii].

    Google Scholar 

  213. Fossa SD, Aass N, Heilo A, Daugaard G, Skakkebaek NE, Stenwig AE, et al. Testicular carcinoma in situ in patients with extragonadal germ-cell tumours: the clinical role of pretreatment biopsy. Ann Oncol. 2003;14(9):1412–8.

    Google Scholar 

  214. De Backer A, Madern GC, Hakvoort-Cammel FG, Oosterhuis JW, Hazebroek FW. Mediastinal germ cell tumors: clinical aspects and outcomes in 7 children. Eur J Pediatr Surg. 2006;16(5):318–22. doi:10.1055/s-2006-924647.

    Article  CAS  PubMed  Google Scholar 

  215. Lack EE. Extragonadal germ cell tumors of the head and neck region: review of 16 cases. Hum Pathol. 1985;16(1):56–64.

    Article  CAS  PubMed  Google Scholar 

  216. Dehner LP, Mills A, Talerman A, Billman GF, Krous HF, Platz CE. Germ cell neoplasms of head and neck soft tissues: a pathologic spectrum of teratomatous and endodermal sinus tumors. Hum Pathol. 1990;21(3):309–18.

    Article  CAS  PubMed  Google Scholar 

  217. De Backer A, Madern GC, van de Ven CP, Tibboel D, Hazebroek FW. Strategy for management of newborns with cervical teratoma. J Perinat Med. 2004;32(6):500–8. doi:10.1515/JPM.2004.122.

    Article  PubMed  Google Scholar 

  218. Azizkhan RG, Haase GM, Applebaum H, Dillon PW, Coran AG, King PA, et al. Diagnosis, management, and outcome of cervicofacial teratomas in neonates: a Childrens Cancer Group study. J Pediatr Surg. 1995;30(2):312–316. doi:0022-3468(95)90580-4 [pii].

    Google Scholar 

  219. Kuhn JJ, Schoem SR, Warnock GR. Squamous cell carcinoma arising in a benign teratoma of the maxilla. Otolaryngol Head Neck Surg. 1996;114(3):447–452. doi:S019459989600109X [pii].

    Google Scholar 

  220. Heffner DK, Hyams VJ. Teratocarcinosarcoma (malignant teratoma?) of the nasal cavity and paranasal sinuses A clinicopathologic study of 20 cases. Cancer. 1984;53(10):2140–54.

    Article  CAS  PubMed  Google Scholar 

  221. Houri T, Hashimoto N, Ibayashi N, Mori T, Fujimoto M, Ueda S, et al. Chromosomal translocation, t(1;11)(q12;p15), in an extragonadal immature teratoma. Cancer Genet Cytogenet. 1997;97(1):79–80. doi:S0165460897001969 [pii].

    Google Scholar 

  222. Pai SA, Naresh KN, Masih K, Ramarao C, Borges AM. Teratocarcinosarcoma of the paranasal sinuses: a clinicopathologic and immunohistochemical study. Hum Pathol. 1998;29(7):718–22.

    Article  CAS  PubMed  Google Scholar 

  223. De Backer A, Madern GC, Wolffenbuttel KP, Oosterhuis JW, Hakvoort-Cammel FG, Hazebroek FW. Testicular germ cell tumors in children: management and outcome in a series of 20 patients. J Pediatr Urol. 2006;2(3):197–201. doi:S1477-5131(05)00139-7 [pii] 10.1016/j.jpurol.2005.08.001.

  224. Metcalfe PD, Farivar-Mohseni H, Farhat W, McLorie G, Khoury A, Bagli DJ. Pediatric testicular tumors: contemporary incidence and efficacy of testicular preserving surgery. J Urol. 2003;170(6 Pt 1):2412–2415; discussion 5–6. doi:10.1097/01.ju.0000097383.09743.f9.

  225. Lee SD, Korean Society of Pediatric Urology. Epidemiological and clinical behavior of prepubertal testicular tumors in Korea. J Urol. 2004;172(2):674–678. doi:S0022-5347(05)61714-4 [pii] 10.1097/01.ju.0000129571.13955.6b.

  226. Fan R, Zhang J, Cheng L, Lin J. Testicular and paratesticular pathology in the pediatric population: a 20 year experience at Riley hospital for children. Pathol Res Pract. 2013;209(7):404–408. doi:S0344-0338(13)00086-1 [pii] 10.1016/j.prp.2013.04.002.

  227. Kato K, Ijiri R, Tanaka Y, Toyoda Y, Chiba K, Kitami K. Testicular immature teratoma with primitive neuroectodermal tumor in early childhood. J Urol. 2000;164(6):2068–2069. doi:S0022-5347(05)66968-6 [pii].

    Google Scholar 

  228. Manivel JC, Reinberg Y, Niehans GA, Fraley EE. Intratubular germ cell neoplasia in testicular teratomas and epidermoid cysts. Correlation with prognosis and possible biologic significance. Cancer. 1989;64(3):715–20.

    Article  CAS  PubMed  Google Scholar 

  229. Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16(5):972–8.

    Article  CAS  PubMed  Google Scholar 

  230. Shu XO, Nesbit ME, Buckley JD, Krailo MD, Robinson LL. An exploratory analysis of risk factors for childhood malignant germ-cell tumors: report from the Childrens Cancer Group (Canada, United States). Cancer Causes Control. 1995;6(3):187–98.

    Article  CAS  PubMed  Google Scholar 

  231. Poynter JN, Radzom AH, Spector LG, Puumala S, Robison LL, Chen Z, et al. Family history of cancer and malignant germ cell tumors in children: a report from the Children’s Oncology Group. Cancer Causes Control. 2010;21(2):181–9. doi:10.1007/s10552-009-9448-2.

    Article  PubMed  Google Scholar 

  232. Gordon A, Lipton D, Woodruff JD. Dysgerminoma: a review of 158 cases from the Emil Novak Ovarian Tumor Registry. Obstet Gynecol. 1981;58(4):497–504.

    CAS  PubMed  Google Scholar 

  233. Comerci Jr JT, Licciardi F, Bergh PA, Gregori C, Breen JL. Mature cystic teratoma: a clinicopathologic evaluation of 517 cases and review of the literature. Obstet Gynecol. 1994;84(1):22–8.

    PubMed  Google Scholar 

  234. De Backer A, Madern GC, Oosterhuis JW, Hakvoort-Cammel FG, Hazebroek FW. Ovarian germ cell tumors in children: a clinical study of 66 patients. Pediatr Blood Cancer. 2006;46(4):459–64. doi:10.1002/pbc.20633.

    Article  PubMed  Google Scholar 

  235. Hartshorne GM, Lyrakou S, Hamoda H, Oloto E, Ghafari F. Oogenesis and cell death in human prenatal ovaries: what are the criteria for oocyte selection? Mol Hum Reprod. 2009;15(12):805–819. doi:gap055 [pii] 10.1093/molehr/gap055.

  236. Anderson RA, Fulton N, Cowan G, Coutts S, Saunders PT. Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis. BMC Dev Biol. 2007;7:136. doi:1471-213X-7-136 [pii] 10.1186/1471-213X-7-136.

  237. Byskov AG, Hoyer PE, Yding Andersen C, Kristensen SG, Jespersen A, Mollgard K. No evidence for the presence of oogonia in the human ovary after their final clearance during the first two years of life. Hum Reprod. 2011;26(8):2129–2139. doi:der145 [pii] 10.1093/humrep/der145.

  238. Zhang C, Berney DM, Hirsch MS, Cheng L, Ulbright TM. Evidence supporting the existence of benign teratomas of the postpubertal testis: a clinical, histopathologic, and molecular genetic analysis of 25 cases. Am J Surg Pathol. 2013;37(6):827–35. doi:10.1097/PAS.0b013e31827dcc4c.

    Article  PubMed  Google Scholar 

  239. Semjen D, Kalman E, Tornoczky T, Szuhai K. Further evidence of the existence of benign teratomas of the postpubertal testis. Am J Surg Pathol. 2014;38(4):580–581. doi:10.1097/PAS.0000000000000186 00000478-201404000-00019 [pii].

  240. Lewis BD, Hurt RD, Payne WS, Farrow GM, Knapp RH, Muhm JR. Benign teratomas of the mediastinum. J Thorac Cardiovasc Surg. 1983;86(5):727–31.

    CAS  PubMed  Google Scholar 

  241. Williamson SR. Germ cell tumors of the mediastinum. In: Marchevsky AM, editor. Pathology of the mediastinum. Cambridge: Cambridge University Press; 2014. p. 146–68.

    Chapter  Google Scholar 

  242. Stendel R, Pietila TA, Lehmann K, Kurth R, Suess O, Brock M. Ruptured intracranial dermoid cysts. Surg Neurol. 2002;57(6):391–398; discussion 8. doi:S0090301902007231 [pii].

    Google Scholar 

  243. Rosenblum MK. Germ Cell Tumours. In: Louis DN, editor. World Health Organization classification of tumours of the central nervous system. 4th ed. Lyon: IARC Press; 2007. p. 197–204.

    Google Scholar 

  244. Ulbright TM, Amin MB, Balzer B, Berney DM, Epstein JI, Guo C, et al. Germ cell tumours. In: Moch H, Humphrey PA, Ulbright TM, Reuter VE, editors. WHO classification of tumours of the urinary system and male genital organs. 4th ed. Lyon: IARC Press; 2016. p. 189–226.

    Google Scholar 

  245. Oosterhuis JW, Looijenga LH. The biology of human germ cell tumours: retrospective speculations and new prospectives. Eur Urol. 1993;23(1):245–50.

    CAS  PubMed  Google Scholar 

  246. Kleinsmith LJ, Pierce Jr GB. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964;24:1544–51.

    CAS  PubMed  Google Scholar 

  247. Honecker F, Stoop H, Mayer F, Bokemeyer C, Castrillon DH, Lau YF, et al. Germ cell lineage differentiation in non-seminomatous germ cell tumours. J Pathol. 2006;208(3):395–400. doi:10.1002/path.1872.

    Article  CAS  PubMed  Google Scholar 

  248. Looijenga LH, Gillis AJ, Stoop H, Hersmus R, Oosterhuis JW. Relevance of microRNAs in normal and malignant development, including human testicular germ cell tumours. Int J Androl. 2007;30(4):304–314; discussion 14–5. doi:IJA765 [pii] 10.1111/j.1365-2605.2007.00765.x.

  249. Poynter JN, Bestrashniy JR, Silverstein KA, Hooten AJ, Lees C, Ross JA, et al. Cross platform analysis of methylation, miRNA and stem cell gene expression data in germ cell tumors highlights characteristic differences by tumor histology. BMC Cancer. 2015;15:769. doi:10.1186/s12885-015-1796-6 10.1186/s12885-015-1796-6 [pii].

  250. Hoozemans DA, Schats R, Lambalk CB, Homburg R, Hompes PG. Human embryo implantation: current knowledge and clinical implications in assisted reproductive technology. Reprod BioMed Online. 2004;9(6):692–715.

    Article  PubMed  Google Scholar 

  251. Morgani SM, Canham MA, Nichols J, Sharov AA, Migueles RP, Ko MS, et al. Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep. 2013;3(6):1945–1957. doi:S2211-1247(13)00216-7 [pii] 10.1016/j.celrep.2013.04.034.

  252. Batata MA, Whitmore Jr WF, Hilaris BS, Tokita N, Grabstald H. Cancer of the undescended or maldescended testis. AJR Am J Roentgenol. 1976;126(2):302–12. doi:10.2214/ajr.126.2.302.

    Article  CAS  PubMed  Google Scholar 

  253. Batata MA, Chu FC, Hilaris BS, Whitmore WF, Golbey RB. Testicular cancer in cryptorchids. Cancer. 1982;49(5):1023–30.

    Article  CAS  PubMed  Google Scholar 

  254. Halme A, Kellokumpu-Lehtinen P, Lehtonen T, Teppo L. Morphology of testicular germ cell tumours in treated and untreated cryptorchidism. Br J Urol. 1989;64(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  255. Nettersheim D, Jostes S, Sharma R, Schneider S, Hofmann A, Ferreira HJ, et al. BMP inhibition in seminomas initiates acquisition of pluripotency via NODAL signaling resulting in reprogramming to an embryonal carcinoma. PLoS Genet. 2015;11(7):e1005415. doi:10.1371/journal.pgen.1005415 PGENETICS-D-15-00545 [pii].

  256. Spiller CM, Feng CW, Jackson A, Gillis AJ, Rolland AD, Looijenga LH, et al. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development. 2012;139(22):4123–32. doi:10.1242/dev.083006.

    Article  CAS  PubMed  Google Scholar 

  257. Spiller CM, Gillis AJ, Burnet G, Stoop H, Koopman P, Bowles J, et al. Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors. Mol Oncol. 2016;10(4):526–37. doi:10.1016/j.molonc.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  258. Bredael JJ, Vugrin D, Whitmore Jr WF. Autopsy findings in 154 patients with germ cell tumors of the testis. Cancer. 1982;50(3):548–51.

    Article  CAS  PubMed  Google Scholar 

  259. Zaloudek CJ, Tavassoli FA, Norris HJ. Dysgerminoma with syncytiotrophoblastic giant cells. A histologically and clinically distinctive subtype of dysgerminoma. Am J Surg Pathol. 1981;5(4):361–7.

    Article  CAS  PubMed  Google Scholar 

  260. Moreira A. Germ cell tumours of the mediastinum. In: Travis W, editor. World Health Organization classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon: IARC Press; 2015. p. 244–66.

    Google Scholar 

  261. Pugh R. Testicular tumours – introduction. In: Pugh R, editor. Pathology of the testis. Oxford: Blackwell Scientific; 1976. p. 139–59.

    Google Scholar 

  262. Oosterhuis JW, Kersemaekers AM, Jacobsen GK, Timmer A, Steyerberg EW, Molier M, et al. Morphology of testicular parenchyma adjacent to germ cell tumours. An interim report. APMIS. 2003;111(1):32–40; discussion 1–2.

    Google Scholar 

  263. Matsutani M, Sano K, Takakura K, Fujimaki T, Nakamura O, Funata N, et al. Primary intracranial germ cell tumors: a clinical analysis of 153 histologically verified cases. J Neurosurg. 1997;86(3):446–55. doi:10.3171/jns.1997.86.3.0446.

    Article  CAS  PubMed  Google Scholar 

  264. Moran CA, Suster S. Primary germ cell tumors of the mediastinum: I. Analysis of 322 cases with special emphasis on teratomatous lesions and a proposal for histopathologic classification and clinical staging. Cancer. 1997;80(4):681–90.

    Article  CAS  PubMed  Google Scholar 

  265. Nichols CR, Saxman S, Williams SD, Loehrer PJ, Miller ME, Wright C, et al. Primary mediastinal nonseminomatous germ cell tumors. A modern single institution experience. Cancer. 1990;65(7):1641–6.

    Article  CAS  PubMed  Google Scholar 

  266. Vicus D, Beiner ME, Klachook S, Le LW, Laframboise S, Mackay H. Pure dysgerminoma of the ovary 35 years on: a single institutional experience. Gynecol Oncol. 2010;117(1):23–6. doi:10.1016/j.ygyno.2009.12.024.

    Article  PubMed  Google Scholar 

  267. Kurman RJ, Norris HJ. Embryonal carcinoma of the ovary: a clinicopathologic entity distinct from endodermal sinus tumor resembling embryonal carcinoma of the adult testis. Cancer. 1976;38(6):2420–33.

    Article  CAS  PubMed  Google Scholar 

  268. Oosterhuis JW, Peeters SH, Smit VT, Stoop H, Looijenga LH, Elzevier HW, et al. Patient with two secondary somatic-type malignancies in a late recurrence of a testicular non-seminoma: illustration of potential and flaw of the cancer stem cell therapy concept. Int J Dev Biol. 2013;57(2–4):153–7. doi:10.1387/ijdb.130141jo.

    Article  PubMed  Google Scholar 

  269. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  270. Oosterhuis JW. The metastasis of human teratomas. In: Damjanov I, Solter D, Knowles BB, editors. The human teratomas. Clifton: Humana Press; 1983. p. 137–71.

    Google Scholar 

  271. Oosterhuis JW, Suurmeyer AJ, Sleyfer DT, Koops HS, Oldhoff J, Fleuren G. Effects of multiple-drug chemotherapy (cis-diammine-dichloroplatinum, bleomycin, and vinblastine) on the maturation of retroperitoneal lymph node metastases of nonseminomatous germ cell tumors of the testis. No evidence for De Novo induction of differentiation. Cancer. 1983;51(3):408–16.

    Article  CAS  PubMed  Google Scholar 

  272. De Graaff WE, Oosterhuis JW, Van der Linden S, Homan van der Heide JN, Schraffordt Koops H, Sleijfer DTh. Residual mature teratoma after chemotherapy for non seminomatous germ cell tumors of the testis occurs significantly less often in lung, than in retroperitoneal lymph node metastases. J Urol Pathol. 1991;1:75–81.

    Google Scholar 

  273. Trabert B, Chen J, Devesa SS, Bray F, McGlynn KA. International patterns and trends in testicular cancer incidence, overall and by histologic subtype, 1973–2007. Andrology. 2015;3(1):4–12. doi:10.1111/andr.293.

    Article  CAS  PubMed  Google Scholar 

  274. Arora RS, Alston RD, Eden TO, Geraci M, Birch JM. Comparative incidence patterns and trends of gonadal and extragonadal germ cell tumors in England, 1979 to 2003. Cancer. 2012;118(17):4290–7. doi:10.1002/cncr.27403.

    Article  PubMed  Google Scholar 

  275. Cools M, Drop SL, Wolffenbuttel KP, Oosterhuis JW, Looijenga LH. Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr Rev. 2006;27(5):468–84. doi:10.1210/er.2006-0005.

    Article  CAS  PubMed  Google Scholar 

  276. Satge D, Sasco AJ, Cure H, Leduc B, Sommelet D, Vekemans MJ. An excess of testicular germ cell tumors in Down’s syndrome: three case reports and a review of the literature. Cancer. 1997;80(5):929–35.

    Article  CAS  PubMed  Google Scholar 

  277. Volkl TM, Langer T, Aigner T, Greess H, Beck JD, Rauch AM, et al. Klinefelter syndrome and mediastinal germ cell tumors. Am J Med Genet A. 2006;140(5):471–81. doi:10.1002/ajmg.a.31103.

    Article  PubMed  Google Scholar 

  278. Bray F, Richiardi L, Ekbom A, Pukkala E, Cuninkova M, Moller H. Trends in testicular cancer incidence and mortality in 22 European countries: continuing increases in incidence and declines in mortality. Int J Cancer. 2006;118(12):3099–111. doi:10.1002/ijc.21747.

    Article  CAS  PubMed  Google Scholar 

  279. Dieckmann KP, Kulejewski M, Pichlmeier U, Loy V. Diagnosis of contralateral testicular intraepithelial neoplasia (TIN) in patients with testicular germ cell cancer: systematic two-site biopsies are more sensitive than a single random biopsy. Eur Urol. 2007;51(1):175–183; discussion 83–5. doi:10.1016/j.eururo.2006.05.051.

  280. Dieckmann KP, Anheuser P, Sattler F, Von Kugelgen T, Matthies C, Ruf C. Sequential bilateral testicular tumours presenting with intervals of 20 years and more. BMC Urol. 2013;13:71. doi:10.1186/1471-2490-13-71.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Thomas GM, Dembo AJ, Hacker NF, DePetrillo AD. Current therapy for dysgerminoma of the ovary. Obstet Gynecol. 1987;70(2):268–75.

    CAS  PubMed  Google Scholar 

  282. De Palo G, Pilotti S, Kenda R, Ratti E, Musumeci R, Mangioni C, et al. Natural history of dysgerminoma. Am J Obstet Gynecol. 1982;143(7):799–807.

    Article  CAS  PubMed  Google Scholar 

  283. Coffey J, Linger R, Pugh J, Dudakia D, Sokal M, Easton DF, et al. Somatic KIT mutations occur predominantly in seminoma germ cell tumors and are not predictive of bilateral disease: report of 220 tumors and review of literature. Genes Chromosomes Cancer. 2008;47(1):34–42. doi:10.1002/gcc.20503.

    Article  CAS  PubMed  Google Scholar 

  284. Heimdal K, Olsson H, Tretli S, Flodgren P, Borresen AL, Fossa SD. Familial testicular cancer in Norway and southern Sweden. Br J Cancer. 1996;73(7):964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int J Cancer. 2002;99(2):260–6. doi:10.1002/ijc.10332.

    Article  CAS  PubMed  Google Scholar 

  286. Hemminki K, Li X. Familial risk in testicular cancer as a clue to a heritable and environmental aetiology. Br J Cancer. 2004;90(9):1765–70. doi:10.1038/sj.bjc.6601714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Akyuz C, Koseoglu V, Gogus S, Balci S, Buyukpamukcu M. Germ cell tumours in a brother and sister. Acta Paediatr. 1997;86(6):668–9.

    Article  CAS  PubMed  Google Scholar 

  288. Greene MH, Mai PL, Loud JT, Pathak A, Peters JA, Mirabello L, et al. Familial testicular germ cell tumors (FTGCT) – overview of a multidisciplinary etiologic study. Andrology. 2015;3(1):47–58. doi:10.1111/andr.294.

    Article  CAS  PubMed  Google Scholar 

  289. Hartmann JT, Fossa SD, Nichols CR, Droz JP, Horwich A, Gerl A, et al. Incidence of metachronous testicular cancer in patients with extragonadal germ cell tumors. J Natl Cancer Inst. 2001;93(22):1733–8.

    Article  CAS  PubMed  Google Scholar 

  290. Kersemaekers AM, Honecker F, Stoop H, Cools M, Molier M, Wolffenbuttel K, et al. Identification of germ cells at risk for neoplastic transformation in gonadoblastoma: an immunohistochemical study for OCT3/4 and TSPY. Hum Pathol. 2005;36(5):512–21. doi:10.1016/j.humpath.2005.02.016.

    Article  CAS  PubMed  Google Scholar 

  291. Cools M, van Aerde K, Kersemaekers AM, Boter M, Drop SL, Wolffenbuttel KP, et al. Morphological and immunohistochemical differences between gonadal maturation delay and early germ cell neoplasia in patients with undervirilization syndromes. J Clin Endocrinol Metab. 2005;90(9):5295–303. doi:10.1210/jc.2005-0139.

    Article  CAS  PubMed  Google Scholar 

  292. Stoop H, Honecker F, van de Geijn GJ, Gillis AJ, Cools MC, de Boer M, et al. Stem cell factor as a novel diagnostic marker for early malignant germ cells. J Pathol. 2008;216(1):43–54. doi:10.1002/path.2378.

    Article  CAS  PubMed  Google Scholar 

  293. Lin Y, Yang Y, Li W, Chen Q, Li J, Pan X, et al. Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol Cell. 2012;48(4):627–40. doi:10.1016/j.molcel.2012.08.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Oosterhuis JW, Castedo SM, de Jong B, Cornelisse CJ, Dam A, Sleijfer DT, et al. Ploidy of primary germ cell tumors of the testis. Pathogenetic and clinical relevance. Lab Investig. 1989;60(1):14–21.

    CAS  PubMed  Google Scholar 

  295. Litchfield K, Summersgill B, Yost S, Sultana R, Labreche K, Dudakia D, et al. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat Commun. 2015;6:5973. doi:10.1038/ncomms6973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Kraggerud SM, Hoei-Hansen CE, Alagaratnam S, Skotheim RI, Abeler VM, Rajpert-De Meyts E, et al. Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts: implications for pathogenesis. Endocr Rev. 2013;34(3):339–76. doi:10.1210/er.2012-1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Oosterhuis JW, Rammeloo RH, Cornelisse CJ, De Jong B, Dam A, Sleijfer DT. Ploidy of malignant mediastinal germ-cell tumors. Hum Pathol. 1990;21(7):729–32.

    Article  CAS  PubMed  Google Scholar 

  298. Terashima K, Yu A, Chow WY, Hsu WC, Chen P, Wong S, et al. Genome-wide analysis of DNA copy number alterations and loss of heterozygosity in intracranial germ cell tumors. Pediatr Blood Cancer. 2014;61(4):593–600. doi:10.1002/pbc.24833.

    Article  PubMed  Google Scholar 

  299. Atkin NB, Baker MC. Specific chromosome change, i(12p), in testicular tumours? Lancet. 1982;2(8311):1349.

    Article  CAS  PubMed  Google Scholar 

  300. Gibas Z, Prout Jr GR, Sandberg AA. Malignant teratoma of the testis with an isochromosome no. 12, i(12p), as the sole structural cytogenetic abnormality. J Urol. 1984;131(4):762–3.

    CAS  PubMed  Google Scholar 

  301. Castedo SM, de Jong B, Oosterhuis JW, Seruca R, Idenburg VJ, Dam A, et al. Chromosomal changes in human primary testicular nonseminomatous germ cell tumors. Cancer Res. 1989;49(20):5696–701.

    CAS  PubMed  Google Scholar 

  302. Castedo SM, de Jong B, Oosterhuis JW, Seruca R, te Meerman GJ, Dam A, et al. Cytogenetic analysis of ten human seminomas. Cancer Res. 1989;49(2):439–43.

    CAS  PubMed  Google Scholar 

  303. van Echten J, Oosterhuis JW, Looijenga LH, van de Pol M, Wiersema J, te Meerman GJ, et al. No recurrent structural abnormalities apart from i(12p) in primary germ cell tumors of the adult testis. Genes Chromosomes Cancer. 1995;14(2):133–44.

    Article  PubMed  Google Scholar 

  304. Looijenga LH, Zafarana G, Grygalewicz B, Summersgill B, Debiec-Rychter M, Veltman J, et al. Role of gain of 12p in germ cell tumour development. APMIS. 2003;111(1):161–171; discussion 72–3.

    Google Scholar 

  305. Speleman F, De Potter C, Dal Cin P, Mangelschots K, Ingelaere H, Laureys G, et al. i(12p) in a malignant ovarian tumor. Cancer Genet Cytogenet. 1990;45(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  306. Hamers A, de Jong B, Suijkerbuijk RF, Geurts van Kessel A, Oosterhuis JW, van Echten J, et al. A 46,XY female with mixed gonadal dysgenesis and a 48,XY, +7, +i(12p) chromosome pattern in a primary gonadal tumor. Cancer Genet Cytogenet. 1991;57(2):219–24.

    Article  CAS  PubMed  Google Scholar 

  307. Dal Cin P, Drochmans A, Moerman P, Van den Berghe H. Isochromosome 12p in mediastinal germ cell tumor. Cancer Genet Cytogenet. 1989;42(2):243–51.

    Article  CAS  PubMed  Google Scholar 

  308. Sung MT, Maclennan GT, Lopez-Beltran A, Zhang S, Montironi R, Cheng L. Primary mediastinal seminoma: a comprehensive assessment integrated with histology, immunohistochemistry, and fluorescence in situ hybridization for chromosome 12p abnormalities in 23 cases. Am J Surg Pathol. 2008;32(1):146–55. doi:10.1097/PAS.0b013e3181379edf.

    Article  PubMed  Google Scholar 

  309. de Bruin TW, Slater RM, Defferrari R, Geurts van Kessel A, Suijkerbuijk RF, Jansen G, et al. Isochromosome 12p-positive pineal germ cell tumor. Cancer Res. 1994;54(6):1542–4.

    PubMed  Google Scholar 

  310. Schneider DT, Zahn S, Sievers S, Alemazkour K, Reifenberger G, Wiestler OD, et al. Molecular genetic analysis of central nervous system germ cell tumors with comparative genomic hybridization. Mod Pathol Off J U S Can Acad Pathol Inc. 2006;19(6):864–73. doi:10.1038/modpathol.3800607.

    CAS  Google Scholar 

  311. Roelofs H, Mostert MC, Pompe K, Zafarana G, van Oorschot M, van Gurp RJ, et al. Restricted 12p amplification and RAS mutation in human germ cell tumors of the adult testis. Am J Pathol. 2000;157(4):1155–66. doi:10.1016/S0002-9440(10)64631-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Zafarana G, Gillis AJ, van Gurp RJ, Olsson PG, Elstrodt F, Stoop H, et al. Coamplification of DAD-R, SOX5, and EKI1 in human testicular seminomas, with specific overexpression of DAD-R, correlates with reduced levels of apoptosis and earlier clinical manifestation. Cancer Res. 2002;62(6):1822–31.

    CAS  PubMed  Google Scholar 

  313. Rodriguez S, Jafer O, Goker H, Summersgill BM, Zafarana G, Gillis AJ, et al. Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2–p12.1. Oncogene. 2003;22(12):1880–91. doi:10.1038/sj.onc.1206302.

    Article  CAS  PubMed  Google Scholar 

  314. Zafarana G, Grygalewicz B, Gillis AJ, Vissers LE, van de Vliet W, van Gurp RJ, et al. 12p-amplicon structure analysis in testicular germ cell tumors of adolescents and adults by array CGH. Oncogene. 2003;22(48):7695–701. doi:10.1038/sj.onc.1207011.

    Article  CAS  PubMed  Google Scholar 

  315. Geurts van Kessel A, van Drunen E, de Jong B, Oosterhuis JW, Langeveld A, Mulder MP. Chromosome 12q heterozygosity is retained in i(12p)-positive testicular germ cell tumor cells. Cancer Genet Cytogenet. 1989;40(1):129–34.

    Article  CAS  PubMed  Google Scholar 

  316. Sinke RJ, Suijkerbuijk RF, de Jong B, Oosterhuis JW. Geurts van Kessel A. Uniparental origin of i(12p) in human germ cell tumors. Genes Chromosomes Cancer. 1993;6(3):161–5.

    Article  CAS  PubMed  Google Scholar 

  317. Looijenga LH, Gillis AJ, Stoop HJ, Hersmus R, Oosterhuis JW. Chromosomes and expression in human testicular germ-cell tumors: insight into their cell of origin and pathogenesis. Ann N Y Acad Sci. 2007;1120:187–214. doi:10.1196/annals.1411.000.

    Article  CAS  PubMed  Google Scholar 

  318. Korkola JE, Houldsworth J, Bosl GJ, Chaganti RS. Molecular events in germ cell tumours: linking chromosome-12 gain, acquisition of pluripotency and response to cisplatin. BJU International. 2009;104(9 Pt B):1334–8. doi:10.1111/j.1464-410X.2009.08855.x.

    Article  CAS  PubMed  Google Scholar 

  319. Adamah DJ, Gokhale PJ, Eastwood DJ, Rajpert De-Meyts E, Goepel J, Walsh JR, et al. Dysfunction of the mitotic:meiotic switch as a potential cause of neoplastic conversion of primordial germ cells. Int J Androl. 2006;29(1):219–27. doi:10.1111/j.1365-2605.2005.00569.x.

    Article  CAS  PubMed  Google Scholar 

  320. de Jong B, Oosterhuis JW, Castedo SM, Vos A, te Meerman GJ. Pathogenesis of adult testicular germ cell tumors. A cytogenetic model. Cancer Genet Cytogenet. 1990;48(2):143–67.

    Article  PubMed  Google Scholar 

  321. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19(8):998–1004. doi:10.1038/nm.3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. McIntyre A, Summersgill B, Grygalewicz B, Gillis AJ, Stoop J, van Gurp RJ, et al. Amplification and overexpression of the KIT gene is associated with progression in the seminoma subtype of testicular germ cell tumors of adolescents and adults. Cancer Res. 2005;65(18):8085–9. doi:10.1158/0008-5472.CAN-05-0471.

    Article  CAS  PubMed  Google Scholar 

  323. Samaniego F, Rodriguez E, Houldsworth J, Murty VV, Ladanyi M, Lele KP, et al. Cytogenetic and molecular analysis of human male germ cell tumors: chromosome 12 abnormalities and gene amplification. Genes Chromosomes Cancer. 1990;1(4):289–300.

    Article  CAS  PubMed  Google Scholar 

  324. Cutcutache I, Suzuki Y, Tan IB, Ramgopal S, Zhang S, Ramnarayanan K, et al. Exome-wide sequencing shows low mutation rates and identifies novel mutated genes in seminomas. Eur Urol. 2015;68(1):77–83. doi:10.1016/j.eururo.2014.12.040.

    Article  CAS  PubMed  Google Scholar 

  325. Mulder MP, Keijzer W, Verkerk A, Boot AJ, Prins ME, Splinter TA, et al. Activated ras genes in human seminoma: evidence for tumor heterogeneity. Oncogene. 1989;4(11):1345–51.

    CAS  PubMed  Google Scholar 

  326. Tian Q, Frierson Jr HF, Krystal GW, Moskaluk CA. Activating c-kit gene mutations in human germ cell tumors. Am J Pathol. 1999;154(6):1643–7. doi:10.1016/S0002-9440(10)65419-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Kemmer K, Corless CL, Fletcher JA, McGreevey L, Haley A, Griffith D, et al. KIT mutations are common in testicular seminomas. Am J Pathol. 2004;164(1):305–13. doi:10.1016/S0002-9440(10)63120-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Bignell G, Smith R, Hunter C, Stephens P, Davies H, Greenman C, et al. Sequence analysis of the protein kinase gene family in human testicular germ-cell tumors of adolescents and adults. Genes Chromosomes Cancer. 2006;45(1):42–6. doi:10.1002/gcc.20265.

    Article  CAS  PubMed  Google Scholar 

  329. Goddard NC, McIntyre A, Summersgill B, Gilbert D, Kitazawa S, Shipley J. KIT and RAS signalling pathways in testicular germ cell tumours: new data and a review of the literature. Int J Androl. 2007;30(4):337–348; discussion 49. doi:10.1111/j.1365-2605.2007.00769.x.

  330. Hoei-Hansen CE, Kraggerud SM, Abeler VM, Kaern J, Rajpert-De Meyts E, Lothe RA. Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers. Mol Cancer. 2007;6:12. doi:10.1186/1476-4598-6-12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  331. Cheng L, Roth LM, Zhang S, Wang M, Morton MJ, Zheng W, et al. KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer. 2011;117(10):2096–103. doi:10.1002/cncr.25794.

    Article  CAS  PubMed  Google Scholar 

  332. Hersmus R, Stoop H, van de Geijn GJ, Eini R, Biermann K, Oosterhuis JW, et al. Prevalence of c-KIT mutations in gonadoblastoma and dysgerminomas of patients with disorders of sex development (DSD) and ovarian dysgerminomas. PLoS One. 2012;7(8):e43952. doi:10.1371/journal.pone.0043952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Przygodzki RM, Hubbs AE, Zhao FQ, O’Leary TJ. Primary mediastinal seminomas: evidence of single and multiple KIT mutations. Lab Investig. 2002;82(10):1369–75.

    Article  CAS  PubMed  Google Scholar 

  334. Fukushima S, Otsuka A, Suzuki T, Yanagisawa T, Mishima K, Mukasa A, et al. Mutually exclusive mutations of KIT and RAS are associated with KIT mRNA expression and chromosomal instability in primary intracranial pure germinomas. Acta Neuropathol. 2014;127(6):911–25. doi:10.1007/s00401-014-1247-5.

    Article  CAS  PubMed  Google Scholar 

  335. Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem. 2004;279(30):31655–63. doi:10.1074/jbc.M403319200.

    Article  CAS  PubMed  Google Scholar 

  336. Przygodzki RM, Moran CA, Suster S, Khan MA, Swalsky PA, Bakker A, et al. Primary mediastinal and testicular seminomas: a comparison of K-ras-2 gene sequence and p53 immunoperoxidase analysis of 26 cases. Hum Pathol. 1996;27(9):975–9.

    Article  CAS  PubMed  Google Scholar 

  337. Tate G, Suzuki T, Kishimoto K, Mitsuya T. A c-KIT codon 816 mutation, D816H, in the testicular germ cell tumor: case report of a Japanese patient with bilateral testicular seminomas. Acta Med Okayama. 2005;59(1):33–6.

    CAS  PubMed  Google Scholar 

  338. Looijenga LH, de Leeuw H, van Oorschot M, van Gurp RJ, Stoop H, Gillis AJ, et al. Stem cell factor receptor (c-KIT) codon 816 mutations predict development of bilateral testicular germ-cell tumors. Cancer Res. 2003;63(22):7674–8.

    CAS  PubMed  Google Scholar 

  339. Biermann K, Goke F, Nettersheim D, Eckert D, Zhou H, Kahl P, et al. c-KIT is frequently mutated in bilateral germ cell tumours and down-regulated during progression from intratubular germ cell neoplasia to seminoma. J Pathol. 2007;213(3):311–8. doi:10.1002/path.2225.

    Article  CAS  PubMed  Google Scholar 

  340. Rapley EA, Hockley S, Warren W, Johnson L, Huddart R, Crockford G, et al. Somatic mutations of KIT in familial testicular germ cell tumours. Br J Cancer. 2004;90(12):2397–2401. doi:10.1038/sj.bjc.6601880 6601880 [pii].

  341. Caruana G, Cambareri AC, Gonda TJ, Ashman LK. Transformation of NIH3T3 fibroblasts by the c-Kit receptor tyrosine kinase: effect of receptor density and ligand-requirement. Oncogene. 1998;16(2):179–90. doi:10.1038/sj.onc.1201494.

    Article  CAS  PubMed  Google Scholar 

  342. Chian R, Young S, Danilkovitch-Miagkova A, Ronnstrand L, Leonard E, Ferrao P, et al. Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood. 2001;98(5):1365–73.

    Article  CAS  PubMed  Google Scholar 

  343. Lind GE, Skotheim RI, Lothe RA. The epigenome of testicular germ cell tumors. APMIS. 2007;115(10):1147–1160. doi:APMapm_660.xml [pii] 10.1111/j.1600-0463.2007.apm_660.xml.x.

  344. Okamoto K. Epigenetics: a way to understand the origin and biology of testicular germ cell tumors. Int J Urol. 2012;19(6):504–11. doi:10.1111/j.1442-2042.2012.02986.x.

    Article  CAS  PubMed  Google Scholar 

  345. Tsuchiya K, Reijo R, Page DC, Disteche CM. Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome. Am J Hum Genet. 1995;57(6):1400–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  346. Lau Y, Chou P, Iezzoni J, Alonzo J, Komuves L. Expression of a candidate gene for the gonadoblastoma locus in gonadoblastoma and testicular seminoma. Cytogenet Cell Genet. 2000;91(1–4):160–164. doi:56838 [pii] 56838.

    Google Scholar 

  347. Lau YF, Li Y, Kido T. Gonadoblastoma locus and the TSPY gene on the human Y chromosome. Birth Defects Res C Embryo Today. 2009;87(1):114–22. doi:10.1002/bdrc.20144.

    Article  CAS  PubMed  Google Scholar 

  348. Oosterhuis JW, Stoop H, Dohle G, Boellaard W, van Casteren N, Wolffenbuttel K, et al. A pathologist’s view on the testis biopsy. Int J Androl. 2011;34(4 Pt 2):e14–e19; discussion e20. doi:10.1111/j.1365-2605.2011.01204.x.

  349. Kaprova-Pleskacova J, Stoop H, Bruggenwirth H, Cools M, Wolffenbuttel KP, Drop SL, et al. Complete androgen insensitivity syndrome: factors influencing gonadal histology including germ cell pathology. Mod Pathol Off J U S Can Acad Pathol Inc. 2014;27(5):721–730. doi:modpathol2013193 [pii] 10.1038/modpathol.2013.193.

  350. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423(6942):825–837. doi:10.1038/nature01722 nature01722 [pii].

  351. Page DC. Hypothesis: a Y-chromosomal gene causes gonadoblastoma in dysgenetic gonads. Development. 1987;101(Suppl):151–5.

    PubMed  Google Scholar 

  352. Hoei-Hansen CE, Sehested A, Juhler M, Lau YF, Skakkebaek NE, Laursen H, et al. New evidence for the origin of intracranial germ cell tumours from primordial germ cells: expression of pluripotency and cell differentiation markers. J Pathol. 2006;209(1):25–33. doi:10.1002/path.1948.

    Article  CAS  PubMed  Google Scholar 

  353. Shahsiah R, Jahanbin B, Rabiei R, Ardalan FA, Sarhadi B, Izadi-Mood N. Malignant ovarian germ cell tumours in gonadal Y chromosome mosaicism. J Clin Pathol. 2011;64(11):973–976. doi:jcp.2011.090738 [pii] 10.1136/jcp.2011.090738.

  354. Jacobsen C, Honecker F. Cisplatin resistance in germ cell tumours: models and mechanisms. Andrology. 2015;3(1):111–21. doi:10.1111/andr.299.

    Article  CAS  PubMed  Google Scholar 

  355. Chaganti RS, Houldsworth J. Genetics and biology of adult human male germ cell tumors. Cancer Res. 2000;60(6):1475–82.

    CAS  PubMed  Google Scholar 

  356. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006;124(6):1169–1181. doi:S0092-8674(06)00291-1 [pii] 10.1016/j.cell.2006.02.037.

  357. van Gurp RJ, Oosterhuis JW, Kalscheuer V, Mariman EC, Looijenga LH. Biallelic expression of the H19 and IGF2 genes in human testicular germ cell tumors. J Natl Cancer Inst. 1994;86(14):1070–5.

    Article  PubMed  Google Scholar 

  358. Netto GJ, Nakai Y, Nakayama M, Jadallah S, Toubaji A, Nonomura N, et al. Global DNA hypomethylation in intratubular germ cell neoplasia and seminoma, but not in nonseminomatous male germ cell tumors. Mod Pathol Off J U S Can Acad Pathol Inc. 2008;21(11):1337–1344. doi:modpathol2008127 [pii] 10.1038/modpathol.2008.127.

  359. Eckert D, Biermann K, Nettersheim D, Gillis AJ, Steger K, Jack HM, et al. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors. BMC Dev Biol. 2008;8:106. doi:1471-213X-8-106 [pii] 10.1186/1471-213X-8-106.

  360. Wermann H, Stoop H, Gillis AJ, Honecker F, van Gurp RJ, Ammerpohl O, et al. Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. J Pathol. 2010;221(4):433–42. doi:10.1002/path.2725.

    CAS  PubMed  Google Scholar 

  361. Almstrup K, Nielsen JE, Mlynarska O, Jansen MT, Jorgensen A, Skakkebaek NE, et al. Carcinoma in situ testis displays permissive chromatin modifications similar to immature foetal germ cells. Br J Cancer. 2010;103(8):1269–1276. doi:6605880 [pii] 10.1038/sj.bjc.6605880.

  362. Brait M, Maldonado L, Begum S, Loyo M, Wehle D, Tavora FF, et al. DNA methylation profiles delineate epigenetic heterogeneity in seminoma and non-seminoma. Br J Cancer. 2012;106(2):414–423. doi:bjc2011468 [pii] 10.1038/bjc.2011.468.

  363. Kristensen DG, Nielsen JE, Jorgensen A, Skakkebaek NE, Rajpert-De Meyts E, Almstrup K. Evidence that active demethylation mechanisms maintain the genome of carcinoma in situ cells hypomethylated in the adult testis. Br J Cancer. 2014;110(3):668–678. doi:bjc2013727 [pii] 10.1038/bjc.2013.727.

  364. Killian JK, Dorssers LCJ, Trabert B, Gillis AJM, Cook MB, Wang Y, et al. Malignant testicular germ cell tumor methylomes demonstrate differentiation-dependent somatic reprogramming but persistent erasure of imprinted loci and the pluripotency regulator DPPA3/STELLA. Genome Res. 2016;26: 1490–1504.

    Google Scholar 

  365. Gillis AJ, Stoop HJ, Hersmus R, Oosterhuis JW, Sun Y, Chen C, et al. High-throughput microRNAome analysis in human germ cell tumours. J Pathol. 2007;213(3):319–28. doi:10.1002/path.2230.

    Article  CAS  PubMed  Google Scholar 

  366. Novotny GW, Belling KC, Bramsen JB, Nielsen JE, Bork-Jensen J, Almstrup K, et al. MicroRNA expression profiling of carcinoma in situ cells of the testis. Endocr Relat Cancer. 2012;19(3):365–379. doi:ERC-11-0271 [pii] 10.1530/ERC-11-0271.

  367. Rajpert-De Meyts E, Bartkova J, Samson M, Hoei-Hansen CE, Frydelund-Larsen L, Bartek J, et al. The emerging phenotype of the testicular carcinoma in situ germ cell. APMIS. 2003;111(1):267–278; discussion 78–9. doi:apm1110130 [pii].

    Google Scholar 

  368. Almstrup K, Hoei-Hansen CE, Wirkner U, Blake J, Schwager C, Ansorge W, et al. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling. Cancer Res. 2004;64(14):4736–4743. doi:10.1158/0008-5472.CAN-04-0679 64/14/4736 [pii].

    Google Scholar 

  369. Almstrup K, Hoei-Hansen CE, Nielsen JE, Wirkner U, Ansorge W, Skakkebaek NE, et al. Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours. Br J Cancer. 2005;92(10):1934–1941. doi:6602560 [pii] 10.1038/sj.bjc.6602560.

  370. Rajpert-De Meyts E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update. 2006;12(3):303–323. doi:dmk006 [pii] 10.1093/humupd/dmk006.

  371. International Germ Cell Consensus Classification: a prognostic factor-based staging system for metastatic germ cell cancers. International Germ Cell Cancer Collaborative Group. J Clin Oncol. 1997;15(2):594–603.

    Google Scholar 

  372. Oosterhuis JW, Andrews PW, Knowles BB, Damjanov I. Effects of cis-platinum on embryonal carcinoma cell lines in vitro. Int J Cancer. 1984;34(1):133–9.

    Article  CAS  PubMed  Google Scholar 

  373. Stampfer MR, Yaswen P. Human epithelial cell immortalization as a step in carcinogenesis. Cancer Lett. 2003;194(2):199–208. doi:S0304383502007073 [pii].

    Google Scholar 

  374. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18(2):173–179. doi:10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3 [pii] 10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3.

    Google Scholar 

  375. Albanell J, Bosl GJ, Reuter VE, Engelhardt M, Franco S, Moore MA, et al. Telomerase activity in germ cell cancers and mature teratomas. J Natl Cancer Inst. 1999;91(15):1321–6.

    Article  CAS  PubMed  Google Scholar 

  376. Turnbull C, Rapley EA, Seal S, Pernet D, Renwick A, Hughes D, et al. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet. 2010;42(7):604–607. doi:ng.607 [pii] 10.1038/ng.607.

  377. Gilbert D, Rapley E, Shipley J. Testicular germ cell tumours: predisposition genes and the male germ cell niche. Nat Rev Cancer. 2011;11(4):278–288. doi:nrc3021 [pii] 10.1038/nrc3021.

    Google Scholar 

  378. Boublikova L, Buchler T, Stary J, Abrahamova J, Trka J. Molecular biology of testicular germ cell tumors: unique features awaiting clinical application. Crit Rev Oncol Hematol. 2014;89(3):366–385. doi:S1040-8428(13)00211-4 [pii] 10.1016/j.critrevonc.2013.10.001.

  379. Koster R, di Pietro A, Timmer-Bosscha H, Gibcus JH, van den Berg A, Suurmeijer AJ, et al. Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest. 2010;120(10):3594–3605. doi:41939 [pii] 10.1172/JCI41939.

  380. Bauer S, Mühlenberg T, Leahy M, Hoiczyk M, Gauler T, Schuler M, et al. Therapeutic potential of Mdm2 inhibition in malignant germ cell tumours. Eur Urol. 2010;57:679–687.

    Google Scholar 

  381. Koster R, Timmer-Bosscha H, Bischoff R, Gietema JA, De Jong S. Disruption of the MDM2-p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell death and disease. 2011;2:e148. doi:10.1038/cddis.2011.33.

  382. Biswal BK, Beyrouthy MJ, Hever-Jardine MP, Amstrong D, Tomlinson CR, Christensen BC, et al. Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-Aza Deoxycytidine is associated with global DNA damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLOS ONE. 2012;7:e53003. doi:10.1371/journal.pone.0053003.

  383. Oosterhuis JW, Damjanov I. Treatment of primary embryo-derived teratocarcinomas in mice with cis-diamminedichloroplatinum. Eur J Cancer Clin Oncol. 1983;19(5):695–9.

    Article  CAS  PubMed  Google Scholar 

  384. Honecker F, Wermann H, Mayer F, Gillis AJ, Stoop H, van Gurp RJ, et al. Microsatellite instability, mismatch repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J Clin Oncol. 2009;27(13):2129–2136. doi:JCO.2008.18.8623 [pii] 10.1200/JCO.2008.18.8623.

  385. Mayer F, Wermann H, Albers P, Stoop H, Gillis AJ, Hartmann JT, et al. Histopathological and molecular features of late relapses in non-seminomas. BJU Int. 2011;107(6):936–43. doi:10.1111/j.1464-410X.2010.09631.x.

    Article  PubMed  Google Scholar 

  386. Michael H, Lucia J, Foster RS, Ulbright TM. The pathology of late recurrence of testicular germ cell tumors. Am J Surg Pathol. 2000;24(2):257–73.

    Article  CAS  PubMed  Google Scholar 

  387. Gillis AJ, Oosterhuis JW, Schipper ME, Barten EJ, van Berlo R, van Gurp RJ, et al. Origin and biology of a testicular Wilms’ tumor. Genes Chromosomes Cancer. 1994;11(2):126–35.

    Article  CAS  PubMed  Google Scholar 

  388. Motzer RJ, Amsterdam A, Prieto V, Sheinfeld J, Murty VV, Mazumdar M, et al. Teratoma with malignant transformation: diverse malignant histologies arising in men with germ cell tumors. J Urol. 1998;159(1):133–138. doi:S0022-5347(01)64035-7 [pii].

    Google Scholar 

  389. Kum JB, Ulbright TM, Williamson SR, Wang M, Zhang S, Foster RS, et al. Molecular genetic evidence supporting the origin of somatic-type malignancy and teratoma from the same progenitor cell. Am J Surg Pathol. 2012;36(12):1849–1856. doi:10.1097/PAS.0b013e31826df1ab 00000478-201212000-00013 [pii].

  390. Guo CC, Punar M, Contreras AL, Tu SM, Pisters L, Tamboli P, et al. Testicular germ cell tumors with sarcomatous components: an analysis of 33 cases. Am J Surg Pathol. 2009;33(8):1173–8. doi:10.1097/PAS.0b013e3181adb9d7.

    Article  PubMed  Google Scholar 

  391. Cunningham JJ, Ulbright TM, Pera MF, Looijenga LH. Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotechnol. 2012;30(9):849–857. doi:nbt.2329 [pii] 10.1038/nbt.2329.

  392. Devouassoux-Shisheboran M, Mauduit C, Tabone E, Droz JP, Benahmed M. Growth regulatory factors and signalling proteins in testicular germ cell tumours. APMIS. 2003;111(1):212–224; discussion 24. doi:apm1110125 [pii].

    Google Scholar 

  393. Neumann JC, Chandler GL, Damoulis VA, Fustino NJ, Lillard K, Looijenga L, et al. Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc Natl Acad Sci U S A. 2011;108(32):13153–13158. doi:1102311108 [pii] 10.1073/pnas.1102311108.

  394. Neumann JC, Lillard K, Damoulis V, Amatruda JF. Zebrafish models of germ cell tumor. Methods Cell Biol. 2011;105:3–24. doi:B978-0-12-381320-6.00001-1 [pii] 10.1016/B978-0-12-381320-6.00001-1.

  395. Basten SG, Davis EE, Gillis AJ, van Rooijen E, Stoop H, Babala N, et al. Mutations in LRRC50 predispose zebrafish and humans to seminomas. PLoS Genet. 2013;9(4):e1003384. doi:10.1371/journal.pgen.1003384 PGENETICS-D-12-02494 [pii].

  396. Mizuno Y, Gotoh A, Kamidono S, Kitazawa S. Establishment and characterization of a new human testicular germ cell tumor cell line (TCam-2). Nihon Hinyokika Gakkai Zasshi. 1993;84(7):1211–8.

    CAS  PubMed  Google Scholar 

  397. Berends JC, Schutte SE, van Dissel-Emiliani FM, de Rooij DG, Looijenga LH, Oosterhuis JW. Significant improvement of the survival of seminoma cells in vitro by use of a rat Sertoli cell feeder layer and serum-free medium. J Natl Cancer Inst. 1991;83(19):1400–3.

    Article  CAS  PubMed  Google Scholar 

  398. de Jong J, Stoop H, Gillis AJ, Hersmus R, van Gurp RJ, van de Geijn GJ, et al. Further characterization of the first seminoma cell line TCam-2. Genes Chromosomes Cancer. 2008;47(3):185–96. doi:10.1002/gcc.20520.

    Article  PubMed  CAS  Google Scholar 

  399. de Jong J, Stoop H, Gillis AJ, van Gurp RJ, van de Geijn GJ, Boer M, et al. Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications. J Pathol. 2008;215(1):21–30. doi:10.1002/path.2332.

    Article  PubMed  CAS  Google Scholar 

  400. Nettersheim D, Gillis AJ, Looijenga LH, Schorle H. TGF-beta1, EGF and FGF4 synergistically induce differentiation of the seminoma cell line TCam-2 into a cell type resembling mixed non-seminoma. Int J Androl. 2011;34(4 Pt 2):e189–203. doi:10.1111/j.1365-2605.2011.01172.x.

    Article  CAS  PubMed  Google Scholar 

  401. Nettersheim D, Westernstroer B, Haas N, Leinhaas A, Brustle O, Schlatt S, et al. Establishment of a versatile seminoma model indicates cellular plasticity of germ cell tumor cells. Genes Chromosomes Cancer. 2012;51(7):717–26. doi:10.1002/gcc.21958.

    Article  CAS  PubMed  Google Scholar 

  402. Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C, Dracopoli NC, et al. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Investig. 1984;50(2):147–62.

    CAS  PubMed  Google Scholar 

  403. Andrews PW, Fenderson B, Hakomori S. Human embryonal carcinoma cells and their differentiation in culture. Int J Androl. 1987;10(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  404. Andrews PW, Casper J, Damjanov I, Duggan-Keen M, Giwercman A, Hata J, et al. Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumours. Int J Cancer. 1996;66(6):806–816. doi:10.1002/(SICI)1097-0215(19960611)66:6<806::AID-IJC17>3.0.CO;2-0 [pii] 10.1002/(SICI)1097-0215(19960611)66:6<806::AID-IJC17>3.0.CO;2-0.

    Google Scholar 

  405. Scully RE. Gonadoblastoma. A review of 74 cases. Cancer. 1970;25(6):1340–56.

    Article  CAS  PubMed  Google Scholar 

  406. Ulbright TM, Young RH. Gonadoblastoma and selected other aspects of gonadal pathology in young patients with disorders of sex development. Semin Diagn Pathol. 2014;31(5):427–440. doi:S0740-2570(14)00064-1 [pii] 10.1053/j.semdp.2014.07.001.

  407. Houk CP, Hughes IA, Ahmed SF, Lee PA, Writing Committee for the International Intersex Consensus Conference Participants. Summary of consensus statement on intersex disorders and their management. International Intersex Consensus Conference. Pediatrics. 2006;118(2):753–757. doi:118/2/753 [pii] 10.1542/peds.2006-0737.

  408. Cools M, Looijenga LH. Tumor risk and clinical follow-up in patients with disorders of sex development. Pediatr Endocrinol Rev. 2011;9(Suppl 1):519–24.

    PubMed  Google Scholar 

  409. Hughes IA. Disorders of sex development: a new definition and classification. Best Pract Res Clin Endocrinol Metab. 2008;22(1):119–134. doi:S1521-690X(07)00105-4 [pii] 10.1016/j.beem.2007.11.001.

  410. Subbiah V, Huff V, Wolff JE, Ketonen L, Lang Jr FF, Stewart J, et al. Bilateral gonadoblastoma with dysgerminoma and pilocytic astrocytoma with WT1 GT-IVS9 mutation: A 46 XY phenotypic female with Frasier syndrome. Pediatr Blood Cancer. 2009;53(7):1349–51. doi:10.1002/pbc.22152.

    Article  PubMed  Google Scholar 

  411. Looijenga LH, Hersmus R, de Leeuw BH, Stoop H, Cools M, Oosterhuis JW, et al. Gonadal tumours and DSD. Best Pract Res Clin Endocrinol Metab. 2010;24(2):291–310. doi:S1521-690X(09)00139-0 [pii] 10.1016/j.beem.2009.10.002.

  412. Tanteles GA, Oakley S, Christian M, O’Neill D, Suri M. Denys-Drash syndrome and gonadoblastoma in a patient with Klinefelter syndrome. Clin Dysmorphol. 2011;20(3):131–5. doi:10.1097/MCD.0b013e328346f6dc.

    Article  PubMed  Google Scholar 

  413. Looijenga LH. Testicular germ cell tumors. Pediatr Endocrinol Rev. 2014;11(Suppl 2):251–62.

    PubMed  Google Scholar 

  414. Achermann J. Disorders of sex development. In: Melmed S, editor. Williams textbook of endocrinology. 12th ed. Philadelphia: Elsevier; 2011. p. 868–934.

    Chapter  Google Scholar 

  415. van der Zwan YG, Biermann K, Wolffenbuttel KP, Cools M, Looijenga LH. Gonadal maldevelopment as risk factor for germ cell cancer: towards a clinical decision model. Eur Urol. 2015;67(4):692–701. doi:S0302-2838(14)00651-4 [pii] 10.1016/j.eururo.2014.07.011.

  416. Davidoff F, Federman DD. Mixed gonadal dysgenesis. Pediatrics. 1973;52(5):725–42.

    CAS  PubMed  Google Scholar 

  417. Sohval AR. “Mixed” gonadal dysgenesis: a variety of hermaphroditism. Am J Hum Genet. 1963;15:155–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  418. Ropke A, Pelz AF, Volleth M, Schlosser HW, Morlot S, Wieacker PF. Sex chromosomal mosaicism in the gonads of patients with gonadal dysgenesis, but normal female or male karyotypes in lymphocytes. Am J Obstet Gynecol. 2004;190(4):1059–1062. doi:10.1016/j.ajog.2003.09.053 S0002937803017794 [pii].

  419. Cools M, Boter M, van Gurp R, Stoop H, Poddighe P, Lau YF, et al. Impact of the Y-containing cell line on histological differentiation patterns in dysgenetic gonads. Clin Endocrinol. 2007;67(2):184–192. doi:CEN2859 [pii] 10.1111/j.1365-2265.2007.02859.x.

  420. Maier EM, Leitner C, Lohrs U, Kuhnle U. True hermaphroditism in an XY individual due to a familial point mutation of the SRY gene. J Pediatr Endocrinol Metab. 2003;16(4):575–80.

    Article  PubMed  Google Scholar 

  421. Isidor B, Capito C, Paris F, Baron S, Corradini N, Cabaret B, et al. Familial frameshift SRY mutation inherited from a mosaic father with testicular dysgenesis syndrome. J Clin Endocrinol Metab. 2009;94(9):3467–3471. doi:jc.2009-0226 [pii] 10.1210/jc.2009-0226.

  422. Shahid M, Dhillon VS, Khalil HS, Haque S, Batra S, Husain SA, et al. A SRY-HMG box frame shift mutation inherited from a mosaic father with a mild form of testicular dysgenesis syndrome in Turner syndrome patient. BMC Med Genet. 2010;11:131. doi:1471-2350-11-131 [pii] 10.1186/1471-2350-11-131.

  423. Hersmus R, Kalfa N, de Leeuw B, Stoop H, Oosterhuis JW, de Krijger R, et al. FOXL2 and SOX9 as parameters of female and male gonadal differentiation in patients with various forms of disorders of sex development (DSD). J Pathol. 2008;215(1):31–8. doi:10.1002/path.2335.

    Article  CAS  PubMed  Google Scholar 

  424. Buell-Gutbrod R, Ivanovic M, Montag A, Lengyel E, Fadare O, Gwin K. FOXL2 and SOX9 distinguish the lineage of the sex cord-stromal cells in gonadoblastomas. Pediatr Dev Pathol. 2011;14(5):391–5. doi:10.2350/10-12-0943-OA.1.

    Article  PubMed  Google Scholar 

  425. Hersmus R, van der Zwan YG, Stoop H, Bernard P, Sreenivasan R, Oosterhuis JW, et al. A 46,XY female DSD patient with bilateral gonadoblastoma, a novel SRY missense mutation combined with a WT1 KTS splice-site mutation. PLoS One. 2012;7(7):e40858. doi:10.1371/journal.pone.0040858 PONE-D-12-13207 [pii].

  426. Hertel JD, Huettner PC, Dehner LP, Pfeifer JD. The chromosome Y-linked testis-specific protein locus TSPY1 is characteristically present in gonadoblastoma. Hum Pathol. 2010;41(11):1544–1549. doi:S0046-8177(10)00123-1 [pii] 10.1016/j.humpath.2010.04.007.

  427. Hersmus R, Stoop H, White SJ, Drop SL, Oosterhuis JW, Incrocci L, et al. Delayed recognition of Disorders of Sex Development (DSD): a missed opportunity for early diagnosis of malignant germ cell tumors. Int J Endocrinol. 2012;2012:671209. doi:10.1155/2012/671209.

    Article  PubMed  PubMed Central  Google Scholar 

  428. Li Y, Vilain E, Conte F, Rajpert-De Meyts E, Lau YF. Testis-specific protein Y-encoded gene is expressed in early and late stages of gonadoblastoma and testicular carcinoma in situ. Urol Oncol. 2007;25(2):141–146. doi:S1078-1439(06)00166-9 [pii] 10.1016/j.urolonc.2006.08.002.

  429. Carver BS, Shayegan B, Serio A, Motzer RJ, Bosl GJ, Sheinfeld J. Long-term clinical outcome after postchemotherapy retroperitoneal lymph node dissection in men with residual teratoma. J Clin Oncol. 2007;25(9):1033–1037. doi:JCO.2005.05.4791 [pii] 10.1200/JCO.2005.05.4791.

  430. Malagon HD, Valdez AM, Moran CA, Suster S. Germ cell tumors with sarcomatous components: a clinicopathologic and immunohistochemical study of 46 cases. Am J Surg Pathol. 2007;31(9):1356–1362. doi:10.1097/PAS.0b013e318033c7c4 00000478-200709000-00008 [pii].

  431. Comiter CV, Kibel AS, Richie JP, Nucci MR, Renshaw AA. Prognostic features of teratomas with malignant transformation: a clinicopathological study of 21 cases. J Urol. 1998;159(3):859–863. doi:S0022-5347(01)63754-6 [pii].

    Google Scholar 

  432. Ganjoo KN, Foster RS, Michael H, Donohue JP, Einhorn LH. Germ cell tumor associated primitive neuroectodermal tumors. J Urol. 2001;165(5):1514–1516. doi:S0022-5347(05)66339-2 [pii].

    Google Scholar 

  433. Michael H, Hull MT, Ulbright TM, Foster RS, Miller KD. Primitive neuroectodermal tumors arising in testicular germ cell neoplasms. Am J Surg Pathol. 1997;21(8):896–904.

    Article  CAS  PubMed  Google Scholar 

  434. Magers MJ, Kao CS, Cole CD, Rice KR, Foster RS, Einhorn LH, et al. “Somatic-type” malignancies arising from testicular germ cell tumors: a clinicopathologic study of 124 cases with emphasis on glandular tumors supporting frequent yolk sac tumor origin. Am J Surg Pathol. 2014;38(10):1396–409. doi:10.1097/PAS.0000000000000262.

    Article  PubMed  Google Scholar 

  435. Howitt BE, Magers MJ, Rice KR, Cole CD, Ulbright TM. Many postchemotherapy sarcomatous tumors in patients with testicular germ cell tumors are sarcomatoid yolk sac tumors: a study of 33 cases. Am J Surg Pathol. 2015;39(2):251–9. doi:10.1097/PAS.0000000000000322.

    Article  PubMed  Google Scholar 

  436. Moul JW, Schanne FJ, Thompson IM, Frazier HA, Peretsman SA, Wettlaufer JN, et al. Testicular cancer in blacks. A multicenter experience. Cancer. 1994;73(2):388–93.

    Article  CAS  PubMed  Google Scholar 

  437. Rosen A, Jayram G, Drazer M, Eggener SE. Global trends in testicular cancer incidence and mortality. Eur Urol. 2011;60(2):374–379. doi:S0302-2838(11)00493-3 [pii] 10.1016/j.eururo.2011.05.004.

  438. Shanmugalingam T, Soultati A, Chowdhury S, Rudman S, Van Hemelrijck M. Global incidence and outcome of testicular cancer. Clin Epidemiol. 2013;5:417–427. doi:10.2147/CLEP.S34430 clep-5-417 [pii].

  439. McGlynn KA, Devesa SS, Graubard BI, Castle PE. Increasing incidence of testicular germ cell tumors among black men in the United States. J Clin Oncol. 2005;23(24):5757–5761. doi:23/24/5757 [pii] 10.1200/JCO.2005.08.227.

    Google Scholar 

  440. Ekbom A, Richiardi L, Akre O, Montgomery SM, Sparen P. Age at immigration and duration of stay in relation to risk for testicular cancer among Finnish immigrants in Sweden. J Natl Cancer Inst. 2003;95(16):1238–40.

    Article  PubMed  Google Scholar 

  441. Montgomery SM, Granath F, Ehlin A, Sparen P, Ekbom A. Germ-cell testicular cancer in offspring of Finnish immigrants to Sweden. Cancer Epidemiol Biomarkers Prev. 2005;14(1):280–282. doi:14/1/280 [pii].

    Google Scholar 

  442. Levine H, Afek A, Shamiss A, Derazne E, Tzur D, Zavdy O, et al. Risk of germ cell testicular cancer according to origin: a migrant cohort study in 1,100,000 Israeli men. Int J Cancer. 2013;132(8):1878–85. doi:10.1002/ijc.27825.

    Article  CAS  PubMed  Google Scholar 

  443. McIver SC, Roman SD, Nixon B, Loveland KL, McLaughlin EA. The rise of testicular germ cell tumours: the search for causes, risk factors and novel therapeutic targets. F1000Res. 2013;2:55. doi:10.12688/f1000research.2-55.v1.

    Google Scholar 

  444. Moller H. Decreased testicular cancer risk in men born in wartime. J Natl Cancer Inst. 1989;81(21):1668–9.

    Article  CAS  PubMed  Google Scholar 

  445. Rajpert-De Meyts E, McGlynn KA, Okamoto K, Jewett MA, Bokemeyer C. Testicular germ cell tumours. Lancet. 2016;387(10029):1762–1774. doi:S0140-6736(15)00991-5 [pii] 10.1016/S0140-6736(15)00991-5.

  446. Cook MB, Akre O, Forman D, Madigan MP, Richiardi L, McGlynn KA. A systematic review and meta-analysis of perinatal variables in relation to the risk of testicular cancer – experiences of the mother. Int J Epidemiol. 2009;38(6):1532–1542. doi:dyp287 [pii] 10.1093/ije/dyp287.

  447. Trabert B, Zugna D, Richiardi L, McGlynn KA, Akre O. Congenital malformations and testicular germ cell tumors. Int J Cancer. 2013;133(8):1900–4. doi:10.1002/ijc.28207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  448. Fossa SD, Chen J, Schonfeld SJ, McGlynn KA, McMaster ML, Gail MH, et al. Risk of contralateral testicular cancer: a population-based study of 29,515 U.S. men. J Natl Cancer Inst. 2005;97(14):1056–1066. doi:97/14/1056 [pii] 10.1093/jnci/dji185.

  449. Moller H, Skakkebaek NE. Risk of testicular cancer in subfertile men: case-control study. BMJ. 1999;318(7183):559–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Tollerud DJ, Blattner WA, Fraser MC, Brown LM, Pottern L, Shapiro E, et al. Familial testicular cancer and urogenital developmental anomalies. Cancer. 1985;55(8):1849–54.

    Article  CAS  PubMed  Google Scholar 

  451. Ferlin A, Ganz F, Pengo M, Selice R, Frigo AC, Foresta C. Association of testicular germ cell tumor with polymorphisms in estrogen receptor and steroid metabolism genes. Endocr Relat Cancer. 2010;17(1):17–25. doi:ERC-09-0176 [pii] 10.1677/ERC-09-0176.

    Google Scholar 

  452. Kristiansen W, Andreassen KE, Karlsson R, Aschim EL, Bremnes RM, Dahl O, et al. Gene variations in sex hormone pathways and the risk of testicular germ cell tumour: a case-parent triad study in a Norwegian-Swedish population. Hum Reprod. 2012;27(5):1525–1535. doi:des075 [pii] 10.1093/humrep/des075.

  453. Cook MB, Akre O, Forman D, Madigan MP, Richiardi L, McGlynn KA. A systematic review and meta-analysis of perinatal variables in relation to the risk of testicular cancer – experiences of the son. Int J Epidemiol. 2010;39(6):1605–1618. doi:dyq120 [pii] 10.1093/ije/dyq120.

  454. Cook MB, Trabert B, McGlynn KA. Organochlorine compounds and testicular dysgenesis syndrome: human data. Int J Androl. 2011;34(4 Pt 2):e68–e84; discussion e–5. doi:10.1111/j.1365-2605.2011.01171.x.

  455. McGlynn KA, Trabert B. Adolescent and adult risk factors for testicular cancer. Nat Rev Urol. 2012;9(6):339–349. doi:nrurol.2012.61 [pii] 10.1038/nrurol.2012.61.

  456. Daling JR, Doody DR, Sun X, Trabert BL, Weiss NS, Chen C, et al. Association of marijuana use and the incidence of testicular germ cell tumors. Cancer. 2009;115(6):1215–23. doi:10.1002/cncr.24159.

    Article  PubMed  PubMed Central  Google Scholar 

  457. Swerdlow AJ, De Stavola BL, Swanwick MA, Maconochie NE. Risks of breast and testicular cancers in young adult twins in England and Wales: evidence on prenatal and genetic aetiology. Lancet. 1997;350(9093):1723–1728. doi:S0140673697055268 [pii].

    Google Scholar 

  458. Kharazmi E, Hemminki K, Pukkala E, Sundquist K, Tryggvadottir L, Tretli S, et al. Cancer risk in relatives of testicular cancer patients by histology type and age at diagnosis: a joint study from five nordic countries. Eur Urol. 2015;68(2):283–289. doi:S0302-2838(14)01387-6 [pii] 10.1016/j.eururo.2014.12.031.

  459. Nathanson KL, Kanetsky PA, Hawes R, Vaughn DJ, Letrero R, Tucker K, et al. The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am J Hum Genet. 2005;77(6):1034–1043. doi:S0002-9297(07)63387-4 [pii] 10.1086/498455.

  460. Pathak A, Stewart DR, Faucz FR, Xekouki P, Bass S, Vogt A, et al. Rare inactivating PDE11A variants associated with testicular germ cell tumors. Endocr Relat Cancer. 2015;22(6):909–917. doi:ERC-15-0034 [pii] 10.1530/ERC-15-0034.

  461. Heimdal K, Olsson H, Tretli S, Fossa SD, Borresen AL, Bishop DT. A segregation analysis of testicular cancer based on Norwegian and Swedish families. Br J Cancer. 1997;75(7):1084–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  462. Hemminki K, Vaittinen P, Dong C, Easton D. Sibling risks in cancer: clues to recessive or X-linked genes? Br J Cancer. 2001;84(3):388–391. doi:10.1054/bjoc.2000.1585 S0007092000915854 [pii].

  463. Valberg M, Grotmol T, Tretli S, Veierod MB, Moger TA, Aalen OO. A hierarchical frailty model for familial testicular germ-cell tumors. Am J Epidemiol. 2014;179(4):499–506. doi:kwt267 [pii] 10.1093/aje/kwt267.

  464. Kanetsky PA, Mitra N, Vardhanabhuti S, Vaughn DJ, Li M, Ciosek SL, et al. A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Hum Mol Genet. 2011;20(15):3109–3117. doi:ddr207 [pii] 10.1093/hmg/ddr207.

  465. Chung CC, Kanetsky PA, Wang Z, Hildebrandt MA, Koster R, Skotheim RI, et al. Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat Genet. 2013;45(6):680–685. doi:ng.2634 [pii] 10.1038/ng.2634.

  466. Schumacher FR, Wang Z, Skotheim RI, Koster R, Chung CC, Hildebrandt MA, et al. Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Hum Mol Genet. 2013;22(13):2748–2753. doi:ddt109 [pii] 10.1093/hmg/ddt109.

  467. Koster R, Mitra N, D’Andrea K, Vardhanabhuti S, Chung CC, Wang Z, et al. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors. Hum Mol Genet. 2014;23(22):6061–6068. doi:ddu305 [pii] 10.1093/hmg/ddu305.

  468. Ruark E, Seal S, McDonald H, Zhang F, Elliot A, Lau K, et al. Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14. Nat Genet. 2013;45(6):686–689. doi:ng.2635 [pii] 10.1038/ng.2635.

  469. Kratz CP, Han SS, Rosenberg PS, Berndt SI, Burdett L, Yeager M, et al. Variants in or near KITLG, BAK1, DMRT1, and TERT-CLPTM1L predispose to familial testicular germ cell tumour. J Med Genet. 2011;48(7):473–476. doi:jmedgenet-2011-100001 [pii] 10.1136/jmedgenet-2011-100001.

  470. Dalgaard MD, Weinhold N, Edsgard D, Silver JD, Pers TH, Nielsen JE, et al. A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation. J Med Genet. 2012;49(1):58–65. doi:jmedgenet-2011-100174 [pii] 10.1136/jmedgenet-2011-100174.

  471. Skakkebaek NE, Holm M, Hoei-Hansen C, Jorgensen N, Rajpert-De Meyts E. Association between testicular dysgenesis syndrome (TDS) and testicular neoplasia: evidence from 20 adult patients with signs of maldevelopment of the testis. APMIS. 2003;111(1):1–9; discussion -11. doi:apm1110103_1 [pii].

    Google Scholar 

  472. Jorgensen A, Lindhardt Johansen M, Juul A, Skakkebaek NE, Main KM, Rajpert-De Meyts E. Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development. Semin Cell Dev Biol. 2015;45:124–137. doi:S1084-9521(15)00173-1 [pii] 10.1016/j.semcdb.2015.09.013.

  473. Lottrup G, Jorgensen A, Nielsen JE, Jorgensen N, Duno M, Vinggaard AM, et al. Identification of a novel androgen receptor mutation in a family with multiple components compatible with the testicular dysgenesis syndrome. J Clin Endocrinol Metab. 2013;98(6):2223–2229. doi:jc.2013-1278 [pii] 10.1210/jc.2013-1278.

  474. Looijenga LH, Van Agthoven T, Biermann K. Development of malignant germ cells – the genvironmental hypothesis. Int J Dev Biol. 2013;57(2–4):241–253. doi:130026ll [pii] 10.1387/ijdb.130026ll.

  475. Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature. 2011;476(7358):101–104. doi:nature10239 [pii] 10.1038/nature10239.

  476. Matson CK, Zarkower D. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet. 2012;13(3):163–174. doi:nrg3161 [pii] 10.1038/nrg3161.

  477. Oram SW, Liu XX, Lee TL, Chan WY, Lau YF. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer. 2006;6:154. doi:1471-2407-6-154 [pii] 10.1186/1471-2407-6-154.

  478. Zeron-Medina J, Wang X, Repapi E, Campbell MR, Su D, Castro-Giner F, et al. A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell. 2013;155(2):410–422. doi:S0092-8674(13)01154-9 [pii] 10.1016/j.cell.2013.09.017.

  479. Gill ME, Hu YC, Lin Y, Page DC. Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci U S A. 2011;108(18):7443–7448. doi:1104501108 [pii] 10.1073/pnas.1104501108.

  480. Skakkebaek NE. Possible carcinoma-in-situ of the testis. Lancet. 1972;2(7776):516–517. doi:S0140-6736(72)91909-5 [pii].

    Google Scholar 

  481. Skakkebaek NE, Berthelsen JG, Giwercman A, Muller J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int J Androl. 1987;10(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  482. Berthelsen JG, Skakkebaek NE, von der Maase H, Sorensen BL, Mogensen P. Screening for carcinoma in situ of the contralateral testis in patients with germinal testicular cancer. Br Med J (Clin Res Ed). 1982;285(6356):1683–6.

    Article  CAS  Google Scholar 

  483. Dieckmann KP, Loy V. Prevalence of contralateral testicular intraepithelial neoplasia in patients with testicular germ cell neoplasms. J Clin Oncol. 1996;14(12):3126–32.

    Article  CAS  PubMed  Google Scholar 

  484. Rajpert-De Meyts E, Kvist M, Skakkebaek NE. Heterogeneity of expression of immunohistochemical tumour markers in testicular carcinoma in situ: pathogenetic relevance. Virchows Arch. 1996;428(3):133–9.

    Article  CAS  PubMed  Google Scholar 

  485. Sonne SB, Perrett RM, Nielsen JE, Baxter MA, Kristensen DM, Leffers H, et al. Analysis of SOX2 expression in developing human testis and germ cell neoplasia. Int J Dev Biol. 2010;54(4):755–760. doi:082668ss [pii] 10.1387/ijdb.082668ss.

  486. Jorgensen A, Nielsen JE, Almstrup K, Toft BG, Petersen BL, Rajpert-De Meyts E. Dysregulation of the mitosis-meiosis switch in testicular carcinoma in situ. J Pathol. 2013;229(4):588–98. doi:10.1002/path.4154.

    Article  CAS  PubMed  Google Scholar 

  487. Mitchell RT, E Camacho-Moll M, Macdonald J, Anderson RA, Kelnar CJ, O’Donnell M, et al. Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential. Mod Pathol Off J U S Can Acad Pathol Inc. 2014;27(9):1255–1266. doi:modpathol2013246 [pii] 10.1038/modpathol.2013.246.

  488. Gueler B, Sonne SB, Zimmer J, Hilscher B, Hilscher W, Graem N, et al. AZFa protein DDX3Y is differentially expressed in human male germ cells during development and in testicular tumours: new evidence for phenotypic plasticity of germ cells. Hum Reprod. 2012;27(6):1547–1555. doi:des047 [pii] 10.1093/humrep/des047.

  489. Hoei-Hansen CE, Rajpert-De Meyts E, Daugaard G, Skakkebaek NE. Carcinoma in situ testis, the progenitor of testicular germ cell tumours: a clinical review. Ann Oncol. 2005;16(6):863–868. doi:mdi175 [pii] 10.1093/annonc/mdi175.

  490. Sakuma Y, Sakurai S, Oguni S, Hironaka M, Saito K. Alterations of the c-kit gene in testicular germ cell tumors. Cancer Sci. 2003;94(6):486–91.

    Article  CAS  PubMed  Google Scholar 

  491. McIntyre A, Gilbert D, Goddard N, Looijenga L, Shipley J. Genes, chromosomes and the development of testicular germ cell tumors of adolescents and adults. Genes Chromosomes Cancer. 2008;47(7):547–57. doi:10.1002/gcc.20562.

    Article  CAS  PubMed  Google Scholar 

  492. Rajpert-De Meyts E. The role of puberty for testicular cancer. In: Bourguignon JP, editor. The Onset of puberty in perspective. Amsterdam: Elsevier Science; 2000. p. 201–13.

    Google Scholar 

  493. Ottesen AM, Skakkebaek NE, Lundsteen C, Leffers H, Larsen J, Rajpert-De Meyts E. High-resolution comparative genomic hybridization detects extra chromosome arm 12p material in most cases of carcinoma in situ adjacent to overt germ cell tumors, but not before the invasive tumor development. Genes Chromosomes Cancer. 2003;38(2):117–25. doi:10.1002/gcc.10244.

    Article  CAS  PubMed  Google Scholar 

  494. von Eyben FE, Jacobsen GK, Rorth M, Von Der Maase H. Microinvasive germ cell tumour (MGCT) adjacent to testicular germ cell tumours. Histopathology. 2004;44(6):547–554. doi:10.1111/j.1365-2559.2004.01889.x HIS1889 [pii].

  495. von Eyben FE, Jacobsen GK, Skotheim RI. Microinvasive germ cell tumor of the testis. Virchows Arch. 2005;447(3):610–25. doi:10.1007/s00428-005-1257-8.

    Article  Google Scholar 

  496. Browne TJ, Richie JP, Gilligan TD, Rubin MA. Intertubular growth in pure seminomas: associations with poor prognostic parameters. Hum Pathol. 2005;36(6):640–645. doi:S0046817705001620 [pii] 10.1016/j.humpath.2005.03.011.

  497. Hvarness T, Nielsen JE, Almstrup K, Skakkebaek NE, Rajpert-De Meyts E, Claesson MH. Phenotypic characterisation of immune cell infiltrates in testicular germ cell neoplasia. J Reprod Immunol. 2013;100(2):135–145. doi:S0165-0378(13)00126-5 [pii] 10.1016/j.jri.2013.10.005.

  498. Hadrup SR, Braendstrup O, Jacobsen GK, Mortensen S, Pedersen LO, Seremet T, et al. Tumor infiltrating lymphocytes in seminoma lesions comprise clonally expanded cytotoxic T cells. Int J Cancer. 2006;119(4):831–8. doi:10.1002/ijc.21894.

    Article  CAS  PubMed  Google Scholar 

  499. Li N, Wang T, Han D. Structural, cellular and molecular aspects of immune privilege in the testis. Front Immunol. 2012;3:152. doi:10.3389/fimmu.2012.00152.

    CAS  PubMed  PubMed Central  Google Scholar 

  500. Goedert JJ, Purdue MP, McNeel TS, McGlynn KA, Engels EA. Risk of germ cell tumors among men with HIV/acquired immunodeficiency syndrome. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1266–1269. doi:16/6/1266 [pii] 10.1158/1055-9965.EPI-07-0042.

  501. Menezes RX, Boetzer M, Sieswerda M, van Ommen GJ, Boer JM. Integrated analysis of DNA copy number and gene expression microarray data using gene sets. BMC Bioinformatics. 2009;10:203. doi:1471-2105-10-203 [pii] 10.1186/1471-2105-10-203.

  502. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6(11):846–856. doi:nrc1991 [pii] 10.1038/nrc1991.

  503. Poulos C, Cheng L, Zhang S, Gersell DJ, Ulbright TM. Analysis of ovarian teratomas for isochromosome 12p: evidence supporting a dual histogenetic pathway for teratomatous elements. Mod Pathol Off J U S Can Acad Pathol Inc. 2006;19(6):766–771. doi:3800596 [pii] 10.1038/modpathol.3800596.

  504. Smith HO, Berwick M, Verschraegen CF, Wiggins C, Lansing L, Muller CY, et al. Incidence and survival rates for female malignant germ cell tumors. Obstet Gynecol. 2006;107(5):1075–1085. doi:107/5/1075 [pii] 10.1097/01.AOG.0000216004.22588.ce.

  505. Lifschitz-Mercer B, Walt H, Kushnir I, Jacob N, Diener PA, Moll R, et al. Differentiation potential of ovarian dysgerminoma: an immunohistochemical study of 15 cases. Hum Pathol. 1995;26(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  506. Parkash V, Carcangiu ML. Transformation of ovarian dysgerminoma to yolk sac tumor: evidence for a histogenetic continuum. Mod Pathol Off J U S Can Acad Pathol Inc. 1995;8(8):881–7.

    CAS  Google Scholar 

  507. Aoki Y, Kase H, Fujita K, Tanaka K. Dysgerminoma with a slightly elevated alpha-fetoprotein level diagnosed as a mixed germ cell tumor after recurrence. Gynecol Obstet Invest. 2003;55(1):58–60. doi:68949 68949 [pii].

    Google Scholar 

  508. Cossu-Rocca P, Jones TD, Roth LM, Eble JN, Zheng W, Karim FW, et al. Cytokeratin and CD30 expression in dysgerminoma. Hum Pathol. 2006;37(8):1015–1021. doi:S0046-8177(06)00128-6 [pii] 10.1016/j.humpath.2006.02.018.

  509. Moller H, Evans H. Epidemiology of gonadal germ cell cancer in males and females. APMIS. 2003;111(1):43–46; discussion 6–8. doi:apm1110107 [pii].

    Google Scholar 

  510. Stang A, Trabert B, Wentzensen N, Cook MB, Rusner C, Oosterhuis JW, et al. Burden of extragonadal germ cell tumours in Europe and the United States. Eur J Cancer. 2012;48(7):1116–1117. doi:S0959-8049(12)00215-8 [pii] 10.1016/j.ejca.2012.02.061.

  511. dos Santos SI, Swerdlow AJ. Ovarian germ cell malignancies in England: epidemiological parallels with testicular cancer. Br J Cancer. 1991;63(5):814–8.

    Article  Google Scholar 

  512. Walker AH, Ross RK, Pike MC, Henderson BE. A possible rising incidence of malignant germ cell tumours in young women. Br J Cancer. 1984;49(5):669–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  513. Cools M, Stoop H, Kersemaekers AM, Drop SL, Wolffenbuttel KP, Bourguignon JP, et al. Gonadoblastoma arising in undifferentiated gonadal tissue within dysgenetic gonads. J Clin Endocrinol Metab. 2006;91(6):2404–2413. doi:jc.2005-2554 [pii] 10.1210/jc.2005-2554.

  514. Koo YJ, Chun YK, Kwon YS, Lee IH, Kim TJ, Lee KH, et al. Ovarian gonadoblastoma with dysgerminoma in a woman with 46XX karyotype. Pathol Int. 2011;61(3):171–3. doi:10.1111/j.1440-1827.2010.02636.x.

    Article  PubMed  Google Scholar 

  515. Zhao S, Kato N, Endoh Y, Jin Z, Ajioka Y, Motoyama T. Ovarian gonadoblastoma with mixed germ cell tumor in a woman with 46, XX karyotype and successful pregnancies. Pathol Int. 2000;50(4):332–335. doi:pin1041 [pii].

    Google Scholar 

  516. Talerman A. Germ cell tumors of the ovary. In: Kurman RJ, editor. Blaustein’s pathology of the female genital tract. New York: Springer-Verlag; 1987. p. 659–721.

    Chapter  Google Scholar 

  517. A L Husaini H, Soudy H, El Din Darwish A, Ahmed M, Eltigani A, A L Mubarak M, et al. Pure dysgerminoma of the ovary: a single institutional experience of 65 patients. Med Oncol. 2012;29(4):2944–8. doi:10.1007/s12032-012-0194-z.

    Article  PubMed  Google Scholar 

  518. Nogales F. Germ cell tumours. In: Tavassoli FA, editor. World Health Organization classification of tumours: pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 163–75.

    Google Scholar 

  519. Guillem V, Poveda A. Germ cell tumours of the ovary. Clin Transl Oncol. 2007;9(4):237–243. doi:1027 [pii].

    Google Scholar 

  520. Nogales FF, Dulcey I, Preda O. Germ cell tumors of the ovary: an update. Arch Pathol Lab Med. 2014;138(3):351–62. doi:10.5858/arpa.2012-0547-RA.

    Article  PubMed  Google Scholar 

  521. Sigismondi C, Scollo P, Ferrandina G, Candiani M, Angioli R, Vigano R, et al. Management of bilateral malignant ovarian germ cell tumors: a MITO-9 retrospective study. Int J Gynecol Cancer. 2015;25(2):203–7. doi:10.1097/IGC.0000000000000358.

    Article  PubMed  Google Scholar 

  522. Stettner AR, Hartenbach EM, Schink JC, Huddart R, Becker J, Pauli R, et al. Familial ovarian germ cell cancer: report and review. Am J Med Genet. 1999;84(1):43–46. doi:10.1002/(SICI)1096-8628(19990507)84:1<43::AID-AJMG9>3.0.CO;2-2 [pii].

    Google Scholar 

  523. Cyriac S, Rajendranath R, Louis AR, Sagar TG. Familial germ cell tumor. Indian J Hum Genet. 2012;18(1):119–121. doi:10.4103/0971-6866.96679 IJHG-18-119 [pii].

  524. Huddart RA, Thompson C, Houlston R, Huddart RA, Nicholls EJ, Horwich A. Familial predisposition to both male and female germ cell tumours? J Med Genet. 1996;33(1):86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  525. Sharpe RM, Skakkebaek NE. Testicular dysgenesis syndrome: mechanistic insights and potential new downstream effects. Fertil Steril. 2008;89(2 Suppl):e33–e38. doi:S0015-0282(07)04302-6 [pii] 10.1016/j.fertnstert.2007.12.026.

  526. Walker AH, Ross RK, Haile RW, Henderson BE. Hormonal factors and risk of ovarian germ cell cancer in young women. Br J Cancer. 1988;57(4):418–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  527. Horn-Ross PL, Whittemore AS, Harris R, Itnyre J. Characteristics relating to ovarian cancer risk: collaborative analysis of 12 U.S. case-control studies. VI. Nonepithelial cancers among adults. Collaborative Ovarian Cancer Group. Epidemiology. 1992;3(6):490–5.

    Article  CAS  PubMed  Google Scholar 

  528. Adami HO, Hsieh CC, Lambe M, Trichopoulos D, Leon D, Persson I, et al. Parity, age at first childbirth, and risk of ovarian cancer. Lancet. 1994;344(8932):1250–1254. doi:S0140-6736(94)90749-8 [pii].

    Google Scholar 

  529. Albrektsen G, Heuch I, Kvale G. Full-term pregnancies and incidence of ovarian cancer of stromal and germ cell origin: a Norwegian prospective study. Br J Cancer. 1997;75(5):767–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  530. Chen T, Surcel HM, Lundin E, Kaasila M, Lakso HA, Schock H, et al. Circulating sex steroids during pregnancy and maternal risk of non-epithelial ovarian cancer. Cancer Epidemiol Biomark Prev. 2011;20(2):324–336. doi:1055-9965.EPI-10-0857 [pii] 10.1158/1055-9965.EPI-10-0857.

  531. Gobbi D, Fascetti Leon F, Aquino A, Melchionda F, Lima M. Metachronous bilateral ovarian teratoma: a germ-line familial disorder and review of surgical management options. J Pediatr Adolesc Gynecol. 2013;26(5):e105–e107. doi:S1083-3188(13)00102-2 [pii] 10.1016/j.jpag.2013.02.006.

  532. Ayhan A, Bukulmez O, Genc C, Karamursel BS, Ayhan A. Mature cystic teratomas of the ovary: case series from one institution over 34 years. Eur J Obstet Gynecol Reprod Biol. 2000;88(2):153–157. doi:S0301211599001414 [pii].

    Google Scholar 

  533. Brown EH, Jr. Identical twins with twisted benign cystic teratoma of the ovary. Am J Obstet Gynecol. 1979;134(8):879–880. doi:0002-9378(79)90860-3 [pii].

    Google Scholar 

  534. Oud PS, Soeters RP, Pahlplatz MM, Hermkens HG, Beck HL, Reubsaet-Veldhuizen J, et al. DNA cytometry of pure dysgerminomas of the ovary. Int J Gynecol Pathol. 1988;7(3):258–67.

    Article  CAS  PubMed  Google Scholar 

  535. Kraggerud SM, Szymanska J, Abeler VM, Kaern J, Eknaes M, Heim S, et al. DNA copy number changes in malignant ovarian germ cell tumors. Cancer Res. 2000;60(11):3025–30.

    CAS  PubMed  Google Scholar 

  536. Ichikawa Y, Yoshida S, Koyama Y, Hirai M, Ishikawa T, Nishida M, et al. Inactivation of p16/CDKN2 and p15/MTS2 genes in different histological types and clinical stages of primary ovarian tumors. Int J Cancer. 1996;69(6):466–470. doi:10.1002/(SICI)1097-0215(19961220)69:6<466::AID-IJC8>3.0.CO;2-2 [pii] 10.1002/(SICI)1097-0215(19961220)69:6<466::AID-IJC8>3.0.CO;2-2.

    Google Scholar 

  537. Lindeman RE, Gearhart MD, Minkina A, Krentz AD, Bardwell VJ, Zarkower D. Sexual cell-fate reprogramming in the ovary by DMRT1. Curr Biol. 2015;25(6):764–771. doi:S0960-9822(15)00066-4 [pii] 10.1016/j.cub.2015.01.034.

  538. DeFalco T. DMRT1 keeps masculinity intact. Dev Cell. 2014;29(5):503–504. doi:S1534-5807(14)00335-9 [pii] 10.1016/j.devcel.2014.05.015.

  539. McCarthy BJ, Shibui S, Kayama T, Miyaoka E, Narita Y, Murakami M, et al. Primary CNS germ cell tumors in Japan and the United States: an analysis of 4 tumor registries. Neuro Oncology. 2012;14(9):1194–1200. doi:nos155 [pii] 10.1093/neuonc/nos155.

  540. Nichols CR, Heerema NA, Palmer C, Loehrer Sr PJ, Williams SD, Einhorn LH. Klinefelter’s syndrome associated with mediastinal germ cell neoplasms. J Clin Oncol. 1987;5(8):1290–4.

    Article  CAS  PubMed  Google Scholar 

  541. Dexeus FH, Logothetis CJ, Chong C, Sella A, Ogden S. Genetic abnormalities in men with germ cell tumors. J Urol. 1988;140(1):80–4.

    CAS  PubMed  Google Scholar 

  542. Kolodziejski L, Duda K, Niezabitowski A, Dyczek S, Staniec B. Occurrence of malignant non-germ cell components in primary mediastinal germ cell tumours. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 1999;25(1):54–60. doi:10.1053/ejso.1998.0600.

    CAS  Google Scholar 

  543. Neiman RS, Orazi A. Mediastinal non-seminomatous germ cell tumours: their association with non-germ cell malignancies. Pathol Res Pract. 1999;195(8):589–94. doi:10.1016/S0344-0338(99)80010-7.

    Article  CAS  PubMed  Google Scholar 

  544. Contreras AL, Punar M, Tamboli P, Tu SM, Pisters L, Moran C, et al. Mediastinal germ cell tumors with an angiosarcomatous component: a report of 12 cases. Hum Pathol. 2010;41(6):832–7. doi:10.1016/j.humpath.2009.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  545. Dulmet EM, Macchiarini P, Suc B, Verley JM. Germ cell tumors of the mediastinum. A 30-year experience. Cancer. 1993;72(6):1894–901.

    Article  CAS  PubMed  Google Scholar 

  546. Hartmann JT, Nichols CR, Droz JP, Horwich A, Gerl A, Fossa SD, et al. Hematologic disorders associated with primary mediastinal nonseminomatous germ cell tumors. J Natl Cancer Inst. 2000;92(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  547. Zhao GQ, Dowell JE. Hematologic malignancies associated with germ cell tumors. Expert Rev Hematol. 2012;5(4):427–37. doi:10.1586/ehm.12.24.

    Article  CAS  PubMed  Google Scholar 

  548. Curry WA, McKay CE, Richardson RL, Greco FA. Klinefelter’s syndrome and mediastinal germ cell neoplasms. J Urol. 1981;125(1):127–9.

    CAS  PubMed  Google Scholar 

  549. Nichols CR, Roth BJ, Heerema N, Griep J, Tricot G. Hematologic neoplasia associated with primary mediastinal germ-cell tumors. N Engl J Med. 1990;322(20):1425–9. doi:10.1056/NEJM199005173222004.

    Article  CAS  PubMed  Google Scholar 

  550. Krywicki R, Bowen K, Anderson L, Garland D, Cobb P, Jenkins T, et al. Mixed-lineage acute myeloid leukemia associated with a suprasellar dysgerminoma. Am J Clin Oncol. 1995;18(1):83–6.

    Article  CAS  PubMed  Google Scholar 

  551. Ulbright TM, Loehrer PJ, Roth LM, Einhorn LH, Williams SD, Clark SA. The development of non-germ cell malignancies within germ cell tumors. A clinicopathologic study of 11 cases. Cancer. 1984;54(9):1824–33.

    Article  CAS  PubMed  Google Scholar 

  552. Nichols CR. Mediastinal germ cell tumors. Clinical features and biologic correlates. Chest. 1991;99(2):472–9.

    Article  CAS  PubMed  Google Scholar 

  553. Hasle H, Jacobsen BB, Asschenfeldt P, Andersen K. Mediastinal germ cell tumour associated with Klinefelter syndrome. A report of case and review of the literature. Eur J Pediatr. 1992;151(10):735–9.

    Article  CAS  PubMed  Google Scholar 

  554. Hasle H, Mellemgaard A, Nielsen J, Hansen J. Cancer incidence in men with Klinefelter syndrome. Br J Cancer. 1995;71(2):416–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  555. Kaido T, Sasaoka Y, Hashimoto H, Taira K. De novo germinoma in the brain in association with Klinefelter’s syndrome: case report and review of the literature. Surg Neurol. 2003;60(6):553–558; discussion 9.

    Google Scholar 

  556. Queipo G, Aguirre D, Nieto K, Pena YR, Palma I, Olvera J, et al. Intracranial germ cell tumors: association with Klinefelter syndrome and sex chromosome aneuploidies. Cytogenet Genome Res. 2008;121(3–4):211–4. doi:10.1159/000138887.

    Article  CAS  PubMed  Google Scholar 

  557. Satge D, Sommelet D, Geneix A, Nishi M, Malet P, Vekemans M. A tumor profile in Down syndrome. Am J Med Genet. 1998;78(3):207–216. doi:10.1002/(SICI)1096-8628(19980707)78:3<207::AID-AJMG1>3.0.CO;2-M [pii].

    Google Scholar 

  558. Hasle H. Pattern of malignant disorders in individuals with Down’s syndrome. Lancet Oncol. 2001;2(7):429–436. doi:S1470-2045(00)00435-6 [pii] 10.1016/S1470-2045(00)00435-6.

  559. Matsui I, Tanimura M, Kobayashi N, Sawada T, Nagahara N, Akatsuka J. Neurofibromatosis type 1 and childhood cancer. Cancer. 1993;72(9):2746–54.

    Article  CAS  PubMed  Google Scholar 

  560. Walker L, Thompson D, Easton D, Ponder B, Ponder M, Frayling I, et al. A prospective study of neurofibromatosis type 1 cancer incidence in the UK. Br J Cancer. 2006;95(2):233–238. doi:6603227 [pii] 10.1038/sj.bjc.6603227.

  561. Hartley AL, Birch JM, Kelsey AM, Marsden HB, Harris M, Teare MD. Are germ cell tumors part of the Li-Fraumeni cancer family syndrome? Cancer Genet Cytogenet. 1989;42(2):221–226. doi:0165-4608(89)90090-3 [pii].

    Google Scholar 

  562. Hisada M, Garber JE, Fung CY, Fraumeni Jr JF, Li FP. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst. 1998;90(8):606–11.

    Article  CAS  PubMed  Google Scholar 

  563. Daugaard G, Rorth M, von der Maase H, Skakkebaek NE. Management of extragonadal germ-cell tumors and the significance of bilateral testicular biopsies. Ann Oncol. 1992;3(4):283–9.

    Article  CAS  PubMed  Google Scholar 

  564. Konig R, Schonberger W, Grimm W. [Mediastinal teratocarcinoma and hypophyseal stalk germinoma in a patient with Klinefelter syndrome] Mediastinales Terato-Carzinom und Hypophysenstielgerminom bei einem Patienten mit Klinefelter Syndrom. Klin Padiatr. 1990;202(1):53–6. doi:10.1055/s-2007-1025486.

    Article  CAS  PubMed  Google Scholar 

  565. Moran CA, Suster S, Przygodzki RM, Koss MN. Primary germ cell tumors of the mediastinum: II. Mediastinal seminomas – a clinicopathologic and immunohistochemical study of 120 cases. Cancer. 1997;80(4):691–698. doi:10.1002/(SICI)1097-0142(19970815)80:4<691::AID-CNCR7>3.0.CO;2-Q [pii].

    Google Scholar 

  566. Moran CA, Suster S. Mediastinal seminomas with prominent cystic changes. A clinicopathologic study of 10 cases. Am J Surg Pathol. 1995;19(9):1047–53.

    Article  CAS  PubMed  Google Scholar 

  567. Moran CA, Suster S. Mediastinal yolk sac tumors associated with prominent multilocular cystic changes of thymic epithelium: a clinicopathologic and immunohistochemical study of five cases. Mod Pathol Off J U S Can Acad Pathol Inc. 1997;10(8):800–3.

    CAS  Google Scholar 

  568. Kesler KA, Brooks JA, Rieger KM, Fineberg NS, Einhorn LH, Brown JW. Mediastinal metastases from testicular nonseminomatous germ cell tumors: patterns of dissemination and predictors of long-term survival with surgery. J Thorac Cardiovasc Surg. 2003;125(4):913–923. doi:10.1067/mtc.2003.407 S0022522303000990 [pii].

  569. de Graaff WE, Oosterhuis JW, de Jong B, Dam A, van Putten WL, Castedo SM, et al. Ploidy of testicular carcinoma in situ. Lab Investig. 1992;66(2):166–8.

    PubMed  Google Scholar 

  570. Sandberg AA, Abe S, Kowalczyk JR, Zedgenidze A, Takeuchi J, Kakati S. Chromosomes and causation of human cancer and leukemia. L. Cytogenetics of leukemias complicating other diseases. Cancer Genet Cytogenet. 1982;7(2):95–136. doi:0165-4608(82)90009-7 [pii].

    Google Scholar 

  571. Mann BD, Sparkes RS, Kern DH, Morton DL. Chromosomal abnormalities of a mediastinal embryonal cell carcinoma in a patient with 47,XXY Klinefelter syndrome: evidence for the premeiotic origin of a germ cell tumor. Cancer Genet Cytogenet. 1983;8(3):191–196. doi:0165-4608(83)90134-6 [pii].

    Google Scholar 

  572. Rodriguez E, Mathew S, Reuter V, Ilson DH, Bosl GJ, Chaganti RS. Cytogenetic analysis of 124 prospectively ascertained male germ cell tumors. Cancer Res. 1992;52(8):2285–91.

    CAS  PubMed  Google Scholar 

  573. Kaplan CG, Askin FB, Benirschke K. Cytogenetics of extragonadal tumors. Teratology. 1979;19(2):261–6. doi:10.1002/tera.1420190217.

    Article  CAS  PubMed  Google Scholar 

  574. Oosterhuis JW, van den Berg E, de Jong B, Timens W, Castedo SM, Rammeloo RH, et al. Mediastinal germ cell tumor with secondary nongerm cell malignancy, and extensive hematopoietic activity. Pathology, DNA-ploidy, and karyotyping. Cancer Genet Cytogenet. 1991;54(2):183–195. doi:0165-4608(91)90206-A [pii].

    Google Scholar 

  575. Ladanyi M, Samaniego F, Reuter VE, Motzer RJ, Jhanwar SC, Bosl GJ, et al. Cytogenetic and immunohistochemical evidence for the germ cell origin of a subset of acute leukemias associated with mediastinal germ cell tumors. J Natl Cancer Inst. 1990;82(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  576. Orazi A, Neiman RS, Ulbright TM, Heerema NA, John K, Nichols CR. Hematopoietic precursor cells within the yolk sac tumor component are the source of secondary hematopoietic malignancies in patients with mediastinal germ cell tumors. Cancer. 1993;71(12):3873–81.

    Article  CAS  PubMed  Google Scholar 

  577. Weidner N. Germ-cell tumors of the mediastinum. Semin Diagn Pathol. 1999;16(1):42–50.

    CAS  PubMed  Google Scholar 

  578. Chaganti RS, Rodriguez E, Mathew S. Origin of adult male mediastinal germ-cell tumours. Lancet. 1994;343(8906):1130–1132. doi:S0140-6736(94)90235-6 [pii].

    Google Scholar 

  579. Hasle H, Jacobsen BB. Origin of male mediastinal germ-cell tumours. Lancet. 1995;345(8956):1046.

    Article  CAS  PubMed  Google Scholar 

  580. Wikstrom AM, Hoei-Hansen CE, Dunkel L, Rajpert-De Meyts E. Immunoexpression of androgen receptor and nine markers of maturation in the testes of adolescent boys with Klinefelter syndrome: evidence for degeneration of germ cells at the onset of meiosis. J Clin Endocrinol Metab. 2007;92(2):714–719. doi:jc.2006-1892 [pii] 10.1210/jc.2006-1892.

  581. Beattie LM. Testicular dysgenesis: report of two cases. Can Serv Med J. 1957;8(8):469–79.

    CAS  PubMed  Google Scholar 

  582. Isurugi K, Imao S, Hirose K, Aoki H. Seminoma in Klinefelter’s syndrome with 47, XXY, 15s+ karyotype. Cancer. 1977;39(5):2041–7.

    Article  CAS  PubMed  Google Scholar 

  583. Carroll PR, Morse MJ, Koduru PP, Chaganti RS. Testicular germ cell tumor in patient with Klinefelter syndrome. Urology. 1988;31(1):72–4.

    Article  CAS  PubMed  Google Scholar 

  584. Nakata Y, Yagishita A, Arai N. Two patients with intraspinal germinoma associated with Klinefelter syndrome: case report and review of the literature. AJNR Am J Neuroradiol. 2006;27(6):1204–1210. doi:27/6/1204 [pii].

    Google Scholar 

  585. Rapley EA, Crockford GP, Teare D, Biggs P, Seal S, Barfoot R, et al. Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet. 2000;24(2):197–200. doi:10.1038/72877.

    Article  CAS  PubMed  Google Scholar 

  586. Crockford GP, Linger R, Hockley S, Dudakia D, Johnson L, Huddart R, et al. Genome-wide linkage screen for testicular germ cell tumour susceptibility loci. Hum Mol Genet. 2006;15(3):443–451. doi:ddi459 [pii] 10.1093/hmg/ddi459.

  587. North TE, de Bruijn MF, Stacy T, Talebian L, Lind E, Robin C, et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity. 2002;16(5):661–672. doi:S1074761302002960 [pii].

    Google Scholar 

  588. de Bruijn MF, Ma X, Robin C, Ottersbach K, Sanchez MJ, Dzierzak E. Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity. 2002;16(5):673–683. doi:S1074761302003138 [pii].

    Google Scholar 

  589. Le PT, Kurtzberg J, Brandt SJ, Niedel JE, Haynes BF, Singer KH. Human thymic epithelial cells produce granulocyte and macrophage colony-stimulating factors. J Immunol. 1988;141(4):1211–7.

    CAS  PubMed  Google Scholar 

  590. Back MR, Hu B, Rutgers J, French S, Moore TC. Metastasis of an intracranial germinoma through a ventriculoperitoneal shunt: recurrence as a yolk-sac tumor. Pediatr Surg Int. 1997;12(1):24–7. doi:10.1007/BF01194796.

    Article  CAS  PubMed  Google Scholar 

  591. Bi WL, Bannykh SI, Baehring J. The growing teratoma syndrome after subtotal resection of an intracranial nongerminomatous germ cell tumor in an adult: case report. Neurosurgery 2005;56:E191–E194.

    Google Scholar 

  592. Czirjak S, Pasztor E, Slowik F, Szeifert G. Third ventricle germinoma after total removal of intrasellar teratoma. Case report. J Neurosurg. 1992;77(4):643–7. doi:10.3171/jns.1992.77.4.0643.

    Article  CAS  PubMed  Google Scholar 

  593. Ikeda J, Sawamura Y, Kato T, Abe H. Metachronous neurohypophyseal germinoma occurring 8 years after total resection of pineal mature teratoma. Surg Neurol. 1998;49(2):205–208; discussion 8–9. doi:S0090-3019(97)00158-4 [pii].

    Google Scholar 

  594. Sugimoto K, Nakahara I, Nishikawa M. Bilateral metachronous germinoma of the basal ganglia occurring long after total removal of a mature pineal teratoma: case report. Neurosurgery. 2002;50(3):613–616; discussion 6–7.

    Google Scholar 

  595. Janzarik WG, Muller K, Lubbert M, Spreer J, Trippel M, Uhlig I, et al. Occurrence of a germinoma 22 years after resection of a mature cerebral teratoma. J Neuro Oncol. 2008;88(2):217–9. doi:10.1007/s11060-008-9554-0.

    Article  Google Scholar 

  596. Mao Q, Ma L, Pang Z, Liu J. Germinoma occurring 2 years after total resection of an intracranial epidermoid cyst in the pineal region. J Neuro Oncol. 2012;106(2):437–9. doi:10.1007/s11060-011-0683-5.

    Article  Google Scholar 

  597. Maeda Y, Yoshikawa K, Kajiwara K, Ideguchi M, Amano T, Saka M, et al. Intracranial yolk sac tumor in a patient with Down syndrome. J Neurosurg Pediatr. 2011;7(6):604–8. doi:10.3171/2011.3.PEDS10500.

    Article  PubMed  Google Scholar 

  598. Araki C, Matsumoto S. Statistical reevaluation of pinealoma and related tumors in Japan. J Neurosurg. 1969;30(2):146–9. doi:10.3171/jns.1969.30.2.0146.

    Article  CAS  PubMed  Google Scholar 

  599. Jennings MT, Gelman R, Hochberg F. Intracranial germ-cell tumors: natural history and pathogenesis. J Neurosurg. 1985;63(2):155–67. doi:10.3171/jns.1985.63.2.0155.

    Article  CAS  PubMed  Google Scholar 

  600. Packer RJ, Cohen BH, Cooney K. Intracranial germ cell tumors. Oncologist. 2000;5(4):312–20.

    CAS  PubMed  Google Scholar 

  601. Kuratsu J, Ushio Y. Epidemiological study of primary intracranial tumors: a regional survey in Kumamoto Prefecture in the southern part of Japan. J Neurosurg. 1996;84(6):946–50. doi:10.3171/jns.1996.84.6.0946.

    Article  CAS  PubMed  Google Scholar 

  602. Committee of Brain Tumor Registry of Japan. Report of brain tumor registry of Japan (1969–1996). Neurol Med Chir (Tokyo). 2003;43(Suppl):i–vii.

    Google Scholar 

  603. Kaneko S, Nomura K, Yoshimura T, Yamaguchi N. Trend of brain tumor incidence by histological subtypes in Japan: estimation from the Brain Tumor Registry of Japan, 1973–1993. J Neuro Oncol. 2002;60(1):61–9.

    Article  Google Scholar 

  604. Wong TT, Chen YW, Guo WY, Chang KP, Ho DM, Yen SH. Germinoma involving the basal ganglia in children. Childs Nerv Syst. 2008;24(1):71–8. doi:10.1007/s00381-007-0495-2.

    Article  CAS  PubMed  Google Scholar 

  605. Villani A, Bouffet E, Blaser S, Millar BA, Hawkins C, Bartels U. Inherent diagnostic and treatment challenges in germinoma of the basal ganglia: a case report and review of the literature. J Neuro Oncol. 2008;88(3):309–14. doi:10.1007/s11060-008-9568-7.

    Article  Google Scholar 

  606. Trentini GP, Maiorana A, De Benedittis A. Metachronous seminoma of the pineal region and right testis. Case report. Appl Pathol. 1985;3(3):129–33.

    CAS  PubMed  Google Scholar 

  607. Peat DS, Trowell JE. Testicular seminoma in a patient with pineal germinoma. J Clin Pathol. 1994;47(8):771–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  608. Daniel C, Fizazi K, Culine S, Zelek L, Wibault P, Theodore C. Metachronous gonadal and extragonadal primaries, or late relapse of germ cell tumor? Urol Oncol. 2001;6(2):49–52. doi:S1078-1439(00)00091-0 [pii].

    Google Scholar 

  609. Iwata H, Mori Y, Takagi H, Shirahashi K, Shinoda J, Shimokawa K, et al. Mediastinal growing teratoma syndrome after cisplatin-based chemotherapy and radiotherapy for intracranial germinoma. J Thorac Cardiovasc Surg. 2004;127(1):291–293. doi:10.1016/S0022 S0022-5223(03)01300-X [pii].

  610. Bedano PM, Bonnin J, Einhorn LH. Metachronous intracranial germinoma in a patient with a previous primary mediastinal seminoma. J Clin Oncol. 2006;24(15):2386–2387. doi:24/15/2386 [pii] 10.1200/JCO.2005.02.1576.

  611. Benesch M, Schreibmayer N, Ratschek M, Hollwarth M, Lackner H, Urban C. Mediastinal yolk sac tumor ten years after treatment of intracranial germinoma. Med Pediatr Oncol. 2003;40(1):54–6. doi:10.1002/mpo.10031.

    Article  PubMed  Google Scholar 

  612. Rubinstein LJ. Tumors of the central nervous system. Atlas of tumor pathology, Series 2. Washington D.C.: Armed Forces Institute of Pathology; 1972.

    Google Scholar 

  613. Hashimoto T, Sasagawa I, Ishigooka M, Kubota Y, Nakada T, Fujita T, et al. Down’s syndrome associated with intracranial germinoma and testicular embryonal carcinoma. Urol Int. 1995;55(2):120–2.

    Article  CAS  PubMed  Google Scholar 

  614. Wakai S, Segawa H, Kitahara S, Asano T, Sano K, Ogihara R, et al. Teratoma in the pineal region in two brothers. Case reports. J Neurosurg. 1980;53(2):239–43. doi:10.3171/jns.1980.53.2.0239.

    Article  CAS  PubMed  Google Scholar 

  615. Kido G, Takeuchi T, Tsukiyama T, Nakamura S, Tsubokawa T, Henmi A. Tumor of the pineal region in three brothers. No Shinkei Geka. 1984;12(8):975–80.

    CAS  PubMed  Google Scholar 

  616. Aoyama I, Kondo A, Ogawa H, Ikai Y. Germinoma in siblings: case reports. Surg Neurol. 1994;41(4):313–7.

    Article  CAS  PubMed  Google Scholar 

  617. Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, et al. Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature. 2009;459(7250):1126–1130. doi:nature08062 [pii] 10.1038/nature08062.

  618. Wong TT, Ho DM, Chang TK, Yang DD, Lee LS. Familial neurofibromatosis 1 with germinoma involving the basal ganglion and thalamus. Childs Nerv Syst. 1995;11(8):456–8.

    Article  CAS  PubMed  Google Scholar 

  619. Aker FV, Berkman ZM, Aydingoz I, Hakan T, Toksoy G. Pineal germinoma associated with multiple congenital melanocytic nevi: a unique presentation. Neuropathology. 2005;25(4):336–40.

    Article  PubMed  Google Scholar 

  620. Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature. 1997;387(6634):733–6. doi:10.1038/42750.

    Article  CAS  PubMed  Google Scholar 

  621. Wolf SS, Patchev VK, Obendorf M. A novel variant of the putative demethylase gene, s-JMJD1C, is a coactivator of the AR. Arch Biochem Biophys. 2007;460(1):56–66. doi:S0003-9861(07)00031-8 [pii] 10.1016/j.abb.2007.01.017.

  622. Kuroki S, Akiyoshi M, Tokura M, Miyachi H, Nakai Y, Kimura H, et al. JMJD1C, a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. Biol Reprod. 2013;89(4):93. doi:biolreprod.113.108597 [pii] 10.1095/biolreprod.113.108597.

  623. Bartkova J, Hoei-Hansen CE, Krizova K, Hamerlik P, Skakkebaek NE, Rajpert-De Meyts E, et al. Patterns of DNA damage response in intracranial germ cell tumors versus glioblastomas reflect cell of origin rather than brain environment: implications for the anti-tumor barrier concept and treatment. Mol Oncol. 2014;8(8):1667–1678. doi:S1574-7891(14)00156-2 [pii] 10.1016/j.molonc.2014.07.001.

  624. Sano K. Pathogenesis of intracranial germ cell tumors reconsidered. J Neurosurg. 1999;90(2):258–64. doi:10.3171/jns.1999.90.2.0258.

    Article  CAS  PubMed  Google Scholar 

  625. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4):268–277. doi:nrc3034 [pii] 10.1038/nrc3034.

  626. Matsaniotis N, Karpouzas J, Economou-Mavrou C. Hypothyroidism and seminoma in association with Down’s syndrome. J Pediatr. 1967;70(5):810–2.

    Article  CAS  PubMed  Google Scholar 

  627. Floret D, Renaud H, Monnet P. Sexual precocity and thoracic polyembryoma: Klinefelter syndrome? J Pediatr. 1979;94(1):163.

    Article  CAS  PubMed  Google Scholar 

  628. Masson P. [Not available] Etude sur le seminome. Rev Can Biol. 1946;5(4):361–87.

    CAS  PubMed  Google Scholar 

  629. Scully RE. Spermatocytic seminoma of the testis. A report of 3 cases and review of the literature. Cancer. 1961;14:788–94.

    Article  CAS  PubMed  Google Scholar 

  630. Eble JN. Spermatocytic seminoma. Hum Pathol. 1994;25(10):1035–42.

    Article  CAS  PubMed  Google Scholar 

  631. Waheeb R, Hofmann MC. Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. Int J Androl. 2011;34(4 Pt 2):e296–e305; discussion e. doi:10.1111/j.1365-2605.2011.01199.x.

  632. Lim J, Goriely A, Turner GD, Ewen KA, Jacobsen GK, Graem N, et al. OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia. J Pathol. 2011;224(4):473–83. doi:10.1002/path.2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  633. Lombardi M, Valli M, Brisigotti M, Rosai J. Spermatocytic seminoma: review of the literature and description of a new case of the anaplastic variant. Int J Surg Pathol. 2011;19(1):5–10. doi:1066896910388645 [pii] 10.1177/1066896910388645.

  634. Mikuz G, Bohm GW, Behrend M, Schafer G, Colecchia M, Verdorfer I. Therapy-resistant metastasizing anaplastic spermatocytic seminoma: a cytogenetic hybrid: a case report. Anal Quant Cytol Histol. 2014;36(3):177–82.

    Google Scholar 

  635. Floyd C, Ayala AG, Logothetis CJ, Silva EG. Spermatocytic seminoma with associated sarcoma of the testis. Cancer. 1988;61(2):409–14.

    Article  CAS  PubMed  Google Scholar 

  636. True LD, Otis CN, Delprado W, Scully RE, Rosai J. Spermatocytic seminoma of testis with sarcomatous transformation. A report of five cases. Am J Surg Pathol. 1988;12(2):75–82.

    Article  CAS  PubMed  Google Scholar 

  637. True LD, Otis CN, Rosai J, Scully RE, Delprado W. Spermatocytic seminoma of testis with sarcomatous transformation. Am J Surg Pathol. 1988;12(10):806.

    Article  CAS  PubMed  Google Scholar 

  638. Carriere P, Baade P, Fritschi L. Population based incidence and age distribution of spermatocytic seminoma. J Urol. 2007;178(1):125–128. doi:S0022-5347(07)00532-0 [pii] 10.1016/j.juro.2007.03.024.

  639. Stevens MJ, Gildersleve J, Jameson CF, Horwich A. Spermatocytic seminoma in a maldescended testis. Br J Urol. 1993;72(5 Pt 1):657–9.

    Article  CAS  PubMed  Google Scholar 

  640. Muller J, Skakkebaek NE, Parkinson MC. The spermatocytic seminoma: views on pathogenesis. Int J Androl. 1987;10(1):147–56.

    Article  CAS  PubMed  Google Scholar 

  641. Dekker I, Rozeboom T, Delemarre J, Dam A, Oosterhuis JW. Placental-like alkaline phosphatase and DNA flow cytometry in spermatocytic seminoma. Cancer. 1992;69(4):993–6.

    Article  CAS  PubMed  Google Scholar 

  642. Kraggerud SM, Berner A, Bryne M, Pettersen EO, Fossa SD. Spermatocytic seminoma as compared to classical seminoma: an immunohistochemical and DNA flow cytometric study. APMIS. 1999;107(3):297–302.

    Article  CAS  PubMed  Google Scholar 

  643. Rosenberg C, Mostert MC, Schut TB, van de Pol M, van Echten J, de Jong B, et al. Chromosomal constitution of human spermatocytic seminomas: comparative genomic hybridization supported by conventional and interphase cytogenetics. Genes Chromosomes Cancer. 1998;23(4):286–291. doi:10.1002/(SICI)1098-2264(199812)23:4<286::AID-GCC2>3.0.CO;2-6 [pii].

    Google Scholar 

  644. Verdorfer I, Rogatsch H, Tzankov A, Steiner H, Mikuz G. Molecular cytogenetic analysis of human spermatocytic seminomas. J Pathol. 2004;204(3):277–81. doi:10.1002/path.1634.

    Article  CAS  PubMed  Google Scholar 

  645. Looijenga LH, Hersmus R, Gillis AJ, Pfundt R, Stoop HJ, van Gurp RJ, et al. Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res. 2006;66(1):290–302. doi:66/1/290 [pii] 10.1158/0008-5472.CAN-05-2936.

    Google Scholar 

  646. Goriely A, Hansen RM, Taylor IB, Olesen IA, Jacobsen GK, McGowan SJ, et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet. 2009;41(11):1247–1252. doi:ng.470 [pii] 10.1038/ng.470.

  647. Rajpert-De Meyts E, Jacobsen GK, Bartkova J, Aubry F, Samson M, Bartek J, et al. The immunohistochemical expression pattern of Chk2, p53, p19INK4d, MAGE-A4 and other selected antigens provides new evidence for the premeiotic origin of spermatocytic seminoma. Histopathology. 2003;42(3):217–226. doi:1587 [pii].

    Google Scholar 

  648. Kristensen DG, Mlynarska O, Nielsen JE, Jacobsen GK, Rajpert-De Meyts E, Almstrup K. Heterogeneity of chromatin modifications in testicular spermatocytic seminoma point toward an epigenetically unstable phenotype. Cancer Genet. 2012;205(9):425–431. doi:S2210-7762(12)00134-2 [pii] 10.1016/j.cancergen.2012.05.003.

  649. Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287(5457):1489–1493. doi:8297 [pii].

    Google Scholar 

  650. Meng X, de Rooij DG, Westerdahl K, Saarma M, Sariola H. Promotion of seminomatous tumors by targeted overexpression of glial cell line-derived neurotrophic factor in mouse testis. Cancer Res. 2001;61(8):3267–71.

    CAS  PubMed  Google Scholar 

  651. Sariola H, Meng X. GDNF-induced seminomatous tumours in mouse – an experimental model for human seminomas? APMIS. 2003;111(1):192–196; discussion 6. doi:apm1110123 [pii].

    Google Scholar 

  652. Matson CK, Murphy MW, Griswold MD, Yoshida S, Bardwell VJ, Zarkower D. The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev Cell. 2010;19(4):612–624. doi:S1534-5807(10)00428-4 [pii] 10.1016/j.devcel.2010.09.010.

  653. Looijenga LH, Olie RA, van der Gaag I, van Sluijs FJ, Matoska J, Ploem-Zaaijer J, et al. Seminomas of the canine testis. Counterpart of spermatocytic seminoma of men? Lab Investig. 1994;71(4):490–6.

    CAS  PubMed  Google Scholar 

  654. Portas TJ, Hermes R, Bryant BR, Goritz F, Ladds P, Hildebrant TB. Seminoma in a southern white rhinoceros (Ceratotherium simum simum). Vet Rec. 2005;157(18):556–558. doi:157/18/556 [pii].

    Google Scholar 

  655. Subramaniam K, Seydoux G. Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the pumilio-like protein PUF-8. Curr Biol. 2003;13(2):134–139. doi:S0960982203000058 [pii].

    Google Scholar 

  656. Bush JM, Gardiner DW, Palmer JS, Rajpert-De Meyts E, Veeramachaneni DN. Testicular germ cell tumours in dogs are predominantly of spermatocytic seminoma type and are frequently associated with somatic cell tumours. Int J Androl. 2011;34(4 Pt 2):e288–e295; discussion e95. doi:10.1111/j.1365-2605.2011.01166.x.

  657. Kaku H, Usui H, Qu J, Shozu M. Mature cystic teratomas arise from meiotic oocytes, but not from pre-meiotic oogonia. Genes Chromosomes Cancer. 2016;55(4):355–64. doi:10.1002/gcc.22339.

    Article  CAS  PubMed  Google Scholar 

  658. Dick HM, Honore LH. Dental structures in benign ovarian cystic teratomas (dermoid cysts). A study of ten cases with a review of the literature. Oral Surg Oral Med Oral Pathol. 1985;60(3):299–307.

    Article  CAS  PubMed  Google Scholar 

  659. Kondi-Pafiti A, Filippidou-Giannopoulou A, Papakonstantinou E, Iavazzo C, Grigoriadis C. Epidermoid or dermoid cysts of the ovary? Clinicopathological characteristics of 28 cases and a new pathologic classification of an old entity. Eur J Gynaecol Oncol. 2012;33(6):617–9.

    CAS  PubMed  Google Scholar 

  660. Roth LM, Talerman A. Recent advances in the pathology and classification of ovarian germ cell tumors. Int J Gynecol Pathol. 2006;25(4):305–20. doi:10.1097/01.pgp.0000225844.59621.9d.

    Article  PubMed  Google Scholar 

  661. Nogales FF, Preda O, Dulcey I. Gliomatosis peritonei as a natural experiment in tissue differentiation. Int J Dev Biol. 2012;56(10–12):969–74. doi:10.1387/ijdb.120172fn.

    Article  CAS  PubMed  Google Scholar 

  662. Blanchet J, Fouquette B. Case of malignant ovarian cystic teratoma with bilateral immature differentiation. Can Med Assoc J. 1979;120(11):1396–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  663. Koonings PP, Campbell K, Mishell Jr DR, Grimes DA. Relative frequency of primary ovarian neoplasms: a 10-year review. Obstet Gynecol. 1989;74(6):921–6.

    CAS  PubMed  Google Scholar 

  664. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. doi:10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  665. Hegde P. Extragonadal omental teratoma: a case report. J Obstet Gynaecol Res. 2014;40(2):618–21. doi:10.1111/jog.12198.

    Article  PubMed  Google Scholar 

  666. Mazzarella P, Okagaki T, Richart RM. Teratoma of the uterine tube. A case report and review of the literature. Obstet Gynecol. 1972;39(3):381–8.

    CAS  PubMed  Google Scholar 

  667. Ohshima K, Umeda A, Hosoi A, Yamamoto T, Munakata S. Mature cystic teratoma in Douglas’ pouch. Case Rep Pathol. 2015;2015:202853. doi:10.1155/2015/202853.

    PubMed  PubMed Central  Google Scholar 

  668. Surti U, Hoffner L, Chakravarti A, Ferrell RE. Genetics and biology of human ovarian teratomas. I. Cytogenetic analysis and mechanism of origin. Am J Hum Genet. 1990;47(4):635–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  669. Devouassoux-Shisheboran M, Vortmeyer AO, Silver SA, Zhuang Z, Tavassoli FA. Teratomatous genotype detected in malignancies of a non-germ cell phenotype. Lab Investig. 2000;80(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  670. Schmidt J, Derr V, Heinrich MC, Crum CP, Fletcher JA, Corless CL, et al. BRAF in papillary thyroid carcinoma of ovary (struma ovarii). Am J Surg Pathol. 2007;31(9):1337–43. doi:10.1097/PAS.0b013e31802f5404.

    Article  PubMed  Google Scholar 

  671. Wolff EF, Hughes M, Merino MJ, Reynolds JC, Davis JL, Cochran CS, et al. Expression of benign and malignant thyroid tissue in ovarian teratomas and the importance of multimodal management as illustrated by a BRAF-positive follicular variant of papillary thyroid cancer. Thyroid Off J Am Thyroid Assoc. 2010;20(9):981–7. doi:10.1089/thy.2009.0458.

    Article  CAS  Google Scholar 

  672. Miura K, Obama M, Yun K, Masuzaki H, Ikeda Y, Yoshimura S, et al. Methylation imprinting of H19 and SNRPN genes in human benign ovarian teratomas. Am J Hum Genet. 1999;65(5):1359–67. doi:10.1086/302615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  673. Linder D. Gene loss in human teratomas. Proc Natl Acad Sci U S A. 1969;63(3):699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  674. Linder D, Power J. Further evidence for post-meiotic origin of teratomas in the human female. Ann Hum Genet. 1970;34(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  675. Linder D, Hecht F, McCaw BK, Campbell JR. Origin of extragonadal teratomas and endodermal sinus tumours. Nature. 1975;254(5501):597–8.

    Article  CAS  PubMed  Google Scholar 

  676. Linder D, McCaw BK, Hecht F. Parthenogenic origin of benign ovarian teratomas. N Engl J Med. 1975;292(2):63–6. doi:10.1056/NEJM197501092920202.

    Article  CAS  PubMed  Google Scholar 

  677. Carritt B, Parrington JM, Welch HM, Povey S. Diverse origins of multiple ovarian teratomas in a single individual. Proc Natl Acad Sci U S A. 1982;79(23):7400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  678. Parrington JM, West LF, Povey S. The origin of ovarian teratomas. J Med Genet. 1984;21(1):4–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  679. Ohama K, Nomura K, Okamoto E, Fukuda Y, Ihara T, Fujiwara A. Origin of immature teratoma of the ovary. Am J Obstet Gynecol. 1985;152(7 Pt 1):896–900.

    Article  CAS  PubMed  Google Scholar 

  680. Ohama K. Androgenesis and parthenogenesis in humans. In:Human genetics. Berlin: Springer-Verlag; 1987. p. 245–9.

    Chapter  Google Scholar 

  681. Deka R, Chakravarti A, Surti U, Hauselman E, Reefer J, Majumder PP, et al. Genetics and biology of human ovarian teratomas. II. Molecular analysis of origin of nondisjunction and gene-centromere mapping of chromosome I markers. Am J Hum Genet. 1990;47(4):644–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  682. Pangas SA. Regulation of the ovarian reserve by members of the transforming growth factor beta family. Mol Reprod Dev. 2012;79(10):666–79. doi:10.1002/mrd.22076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  683. Zhang M, Su YQ, Sugiura K, Wigglesworth K, Xia G, Eppig JJ. Estradiol promotes and maintains cumulus cell expression of natriuretic peptide receptor 2 (NPR2) and meiotic arrest in mouse oocytes in vitro. Endocrinology. 2011;152(11):4377–4385. doi:en.2011-1118 [pii] 10.1210/en.2011-1118.

  684. Azoury RS, Jubayli NW, Barakat BY. Dermoid cyst of ovary containing fetus-like structure. Obstet Gynecol. 1973;42(6):887–91.

    CAS  PubMed  Google Scholar 

  685. Lee YH, Kim SG, Choi SH, Kim IS, Kim SH. Ovarian mature cystic teratoma containing homunculus: a case report. J Korean Med Sci. 2003;18(6):905–907. doi:200312905 [pii] 10.3346/jkms.2003.18.6.905.

  686. Kuno N, Kadomatsu K, Nakamura M, Miwa-Fukuchi T, Hirabayashi N, Ishizuka T. Mature ovarian cystic teratoma with a highly differentiated homunculus: a case report. Birth Defects Res A Clin Mol Teratol. 2004;70(1):40–6. doi:10.1002/bdra.10133.

    Article  CAS  PubMed  Google Scholar 

  687. Seckl MJ, Sebire NJ, Berkowitz RS. Gestational trophoblastic disease. Lancet. 2010;376(9742):717–729. doi:S0140-6736(10)60280-2 [pii] 10.1016/S0140-6736(10)60280-2.

  688. Lurain JR. Gestational trophoblastic disease II: classification and management of gestational trophoblastic neoplasia. Am J Obstet Gynecol. 2011;204(1):11–18. doi:S0002-9378(10)00852-5 [pii] 10.1016/j.ajog.2010.06.072.

  689. Hui P. Molar pregnancies. In: Kurman RJ, editor. World Health Organization classification of tumours of female reproductive organs. Lyon: IARC Press; 2014. p. 163–6.

    Google Scholar 

  690. Yoshida K, Nagasaka T, Nakashima N, Nishida Y, Saito M, Tomomitsu O. Elucidation of vascular structure of molar villi in complete hydatidiform mole by CD-34 antibody. Int J Gynecol Pathol. 2000;19(3):212–8.

    Article  CAS  PubMed  Google Scholar 

  691. Kim KR, Park BH, Hong YO, Kwon HC, Robboy SJ. The villous stromal constituents of complete hydatidiform mole differ histologically in very early pregnancy from the normally developing placenta. Am J Surg Pathol. 2009;33(2):176–85. doi:10.1097/PAS.0b013e31817fada1.

    Article  PubMed  Google Scholar 

  692. Ngan HY, Kohorn EI, Cole LA, Kurman RJ, Kim SJ, Lurain JR, et al. Trophoblastic disease. Int J Gynaecol Obstet. 2012;119 Suppl 2:S130–S136. doi:S0020-7292(12)60026-5 [pii] 10.1016/S0020-7292(12)60026-5.

  693. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300(5618):455. doi:10.1126/science.1083557 300/5618/455 [pii].

  694. Novakovic B, Saffery R. DNA methylation profiling highlights the unique nature of the human placental epigenome. Epigenomics. 2010;2(5):627–38. doi:10.2217/epi.10.45.

    Article  CAS  PubMed  Google Scholar 

  695. Xue WC, Chan KY, Feng HC, Chiu PM, Ngan HY, Tsao SW, et al. Promoter hypermethylation of multiple genes in hydatidiform mole and choriocarcinoma. J Mol Diagn. 2004;6(4):326–334. doi:S1525-1578(10)60528-4 [pii] 10.1016/S1525-1578(10)60528-4.

  696. Hertig AT. Tumors of the female sex organs. Part I hydatidiform mole and choriocarcinoma. Armed Forces Institute of Pathology: Washington, D.C; 1956.

    Google Scholar 

  697. Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38(3):300–302. doi:ng1740 [pii] 10.1038/ng1740.

  698. Sebire NJ, Lindsay I, Fisher RA, Savage P, Seckl MJ. Overdiagnosis of complete and partial hydatidiform mole in tubal ectopic pregnancies. Int J Gynecol Pathol. 2005;24(3):260–264. doi:00004347-200507000-00010 [pii].

    Google Scholar 

  699. Kajii T, Ohama K. Androgenetic origin of hydatidiform mole. Nature. 1977;268(5621):633–4.

    Article  CAS  PubMed  Google Scholar 

  700. Lipata F, Parkash V, Talmor M, Bell S, Chen S, Maric V, et al. Precise DNA genotyping diagnosis of hydatidiform mole. Obstet Gynecol. 2010;115(4):784–794. doi:10.1097/AOG.0b013e3181d489ec 00006250-201004000-00018 [pii].

  701. Fukunaga M, Endo Y, Ushigome S. Clinicopathologic study of tetraploid hydropic villous tissues. Arch Pathol Lab Med. 1996;120(6):569–72.

    CAS  PubMed  Google Scholar 

  702. Wake N, Takagi N, Sasaki M. Androgenesis as a cause of hydatidiform mole. J Natl Cancer Inst. 1978;60(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  703. Jacobs PA, Szulman AE, Funkhouser J, Matsuura JS, Wilson CC. Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann Hum Genet. 1982;46(Pt 3):223–31.

    Article  CAS  PubMed  Google Scholar 

  704. Lawler SD, Fisher RA, Pickthall VJ, Povey S, Evans MW. Genetic studies on hydatidiform moles. I. The origin of partial moles. Cancer Genet Cytogenet. 1982;5(4):309–20.

    Article  CAS  PubMed  Google Scholar 

  705. Genest DR. Partial hydatidiform mole: clinicopathological features, differential diagnosis, ploidy and molecular studies, and gold standards for diagnosis. Int J Gynecol Pathol. 2001;20(4):315–22.

    Article  CAS  PubMed  Google Scholar 

  706. Blum B, Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle. 2009;8(23):3822–3830. doi:10067 [pii] 10.4161/cc.8.23.10067.

  707. Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24(20):2239–2263. doi:24/20/2239 [pii] 10.1101/gad.1963910.

  708. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007;25(2):207–215. doi:nbt1285 [pii] 10.1038/nbt1285.

  709. Draper JS, Moore HD, Ruban LN, Gokhale PJ, Andrews PW. Culture and characterization of human embryonic stem cells. Stem Cells Dev. 2004;13(4):325–36. doi:10.1089/scd.2004.13.325.

    Article  CAS  PubMed  Google Scholar 

  710. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet. 2005;37(10):1099–1103. doi:ng1631 [pii] 10.1038/ng1631.

  711. Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol. 2009;27(1):91–97. doi:nbt.1516 [pii] 10.1038/nbt.1516.

  712. Lefort N, Feyeux M, Bas C, Feraud O, Bennaceur-Griscelli A, Tachdjian G, et al. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21 Nat Biotechnol. 2008;26(12):1364–1366. doi:nbt.1509 [pii] 10.1038/nbt.1509.

  713. Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y, et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol. 2008;26(12):1361–1363. doi:nbt.1510 [pii] 10.1038/nbt.1510.

  714. Inzunza J, Sahlen S, Holmberg K, Stromberg AM, Teerijoki H, Blennow E, et al. Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol Hum Reprod. 2004;10(6):461–466. doi:10.1093/molehr/gah051 gah051 [pii].

  715. Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell. 2014;156(4):663–677. doi:S0092-8674(14)00015-4 [pii] 10.1016/j.cell.2014.01.005.

  716. Shih CC, Forman SJ, Chu P, Slovak M. Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev. 2007;16(6):893–902. doi:10.1089/scd.2007.0070.

    Article  CAS  PubMed  Google Scholar 

  717. Unzu C, Friedli M, Bosman A, Jaconi ME, Wildhaber BE, Rougemont AL. Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues. Stem Cells Int. 2016;2016:4370142. doi:10.1155/2016/4370142.

    Article  PubMed  PubMed Central  Google Scholar 

  718. Misra P, Husain Q, Svider PF, Sanghvi S, Liu JK, Eloy JA. Management of sinonasal teratocarcinosarcoma: a systematic review. Am J Otolaryngol. 2014;35(1):5–11. doi:S0196-0709(13)00117-8 [pii] 10.1016/j.amjoto.2013.04.010.

  719. Kinjo T, Taniguchi H, Kushima R, Sekine S, Oda I, Saka M, et al. Histologic and immunohistochemical analyses of alpha-fetoprotein – producing cancer of the stomach. Am J Surg Pathol. 2012;36(1):56–65. doi:10.1097/PAS.0b013e31823aafec 00000478-201201000-00008 [pii].

  720. Preda O, Dema A, Iacob M, Goyenaga P, Dulcey I, Aneiros Fernandez J, et al. Urothelial carcinoma of the renal pelvis with simultaneous trophoblastic and malignant clear cell endodermal-type differentiation. Virchows Arch. 2012;460(3):353–6. doi:10.1007/s00428-012-1211-5.

    Article  PubMed  Google Scholar 

  721. Nogales FF, Bergeron C, Carvia RE, Alvaro T, Fulwood HR. Ovarian endometrioid tumors with yolk sac tumor component, an unusual form of ovarian neoplasm. Analysis of six cases. Am J Surg Pathol. 1996;20(9):1056–66.

    Article  CAS  PubMed  Google Scholar 

  722. Liang L, Zhang Y, Malpica A, Ramalingam P, Euscher ED, Fuller GN, et al. Gliomatosis peritonei: a clinicopathologic and immunohistochemical study of 21 cases. Mod Pathol Off J U S Can Acad Pathol Inc. 2015;28(12):1613–1620. doi:modpathol2015116 [pii] 10.1038/modpathol.2015.116.

  723. Alexander M, Cope N, Renninson J, Hong A, Simpson RH, Hirschowitz L. Relationship between endometriosis, endometrioid adenocarcinoma, gliomatosis peritonei, and carcinoid tumor in a patient with recurrent ovarian teratoma. Int J Gynecol Pathol. 2011;30(2):151–7. doi:10.1097/PGP.0b013e3181f6bcd4.

    PubMed  Google Scholar 

  724. Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P, et al. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 2008;76(8):843–856. doi:S0301-4681(09)60024-4 [pii] 10.1111/j.1432-0436.2008.00268.x.

  725. Virant-Klun I, Rozman P, Cvjeticanin B, Vrtacnik-Bokal E, Novakovic S, Rulicke T, et al. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 2009;18(1):137–49. doi:10.1089/scd.2007.0238.

    Article  CAS  PubMed  Google Scholar 

  726. van Echten J, de Jong B, Sinke RJ, Weghuis DO, Sleijfer DT, Oosterhuis JW. Definition of a new entity of malignant extragonadal germ cell tumors. Genes Chromosomes Cancer. 1995;12(1):8–15.

    Article  PubMed  Google Scholar 

  727. Noguera R, Navarro S, Carda C, Peydro-Olaya A, Llombart-Bosch A. Near-haploidy in a malignant sacrococcygeal teratoma. Cancer Genet Cytogenet. 1999;108(1):70–74. doi:S0165460898001150 [pii].

    Google Scholar 

  728. Chinoy RF, Soman CS, Swaroop D, Badwar RA. Extragonadal malignant teratoma of the foot. Indian J Cancer. 1992;29(2):96–9.

    CAS  PubMed  Google Scholar 

  729. Ait Benali H, Lalya L, Allaoui M, Benmansour A, Elkhanoussi B, Benjelloun S, et al. Extragonadal mixed germ cell tumor of the right arm: description of the first case in the literature. World J Surg Oncol. 2012;10:69. doi:1477-7819-10-69 [pii] 10.1186/1477-7819-10-69.

  730. Garcia-Galvis OF, Cabrera-Ozoria C, Fernandez JA, Stolnicu S, Nogales FF. Malignant Mullerian mixed tumor of the ovary associated with yolk sac tumor, neuroepithelial and trophoblastic differentiation (teratoid carcinosarcoma). Int J Gynecol Pathol. 2008;27(4):515–20. doi:10.1097/PGP.0b013e31817b06c7.

    Article  PubMed  Google Scholar 

  731. Salem F, Rosenblum MK, Jhanwar SC, Kancherla P, Ghossein RA, Carlson DL. Teratocarcinosarcoma of the nasal cavity and paranasal sinuses: report of 3 cases with assessment for chromosome 12p status. Hum Pathol. 2008;39(4):605–609. doi:S0046-8177(07)00486-8 [pii] 10.1016/j.humpath.2007.09.002.

  732. Thomas J, Adegboyega P, Iloabachie K, Mooring JW, Lian T. Sinonasal teratocarcinosarcoma with yolk sac elements: a neoplasm of somatic or germ cell origin? Ann Diagn Pathol. 2011;15(2):135–139. doi:S1092-9134(10)00009-2 [pii] 10.1016/j.anndiagpath.2010.01.004.

  733. Sinke RJ, Weghuis DO, Suijkerbuijk RF, Tanigami A, Nakamura Y, Larsson C, et al. Molecular characterization of a recurring complex chromosomal translocation in two human extragonadal germ cell tumors. Cancer Genet Cytogenet. 1994;73(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  734. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–463. doi:10.1038/nature02625 nature02625 [pii].

  735. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447(7143):433–440. doi:nature05919 [pii] 10.1038/nature05919.

  736. Jelinic P, Shaw P. Loss of imprinting and cancer. J Pathol. 2007;211(3):261–8. doi:10.1002/path.2116.

    Article  CAS  PubMed  Google Scholar 

  737. Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res. 2002;62(22):6442–6.

    CAS  PubMed  Google Scholar 

  738. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science. 2003;299(5613):1753–1755. doi:10.1126/science.1080902 299/5613/1753 [pii].

  739. Kim HT, Choi BH, Niikawa N, Lee TS, Chang SI. Frequent loss of imprinting of the H19 and IGF-II genes in ovarian tumors. Am J Med Genet. 1998;80(4):391–395. doi:10.1002/(SICI)1096-8628(19981204)80:4<391::AID-AJMG16>3.0.CO;2-H [pii].

    Google Scholar 

  740. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40(5):499–507. doi:ng.127 [pii] 10.1038/ng.127.

  741. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG, et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell. 2010;143(2):313–324. doi:S0092-8674(10)01058-5 [pii] 10.1016/j.cell.2010.09.010.

  742. Yun K. A new marker for rhabdomyosarcoma. Insulin-like growth factor II. Lab Investig. 1992;67(5):653–64.

    CAS  PubMed  Google Scholar 

  743. Baccarini P, Fiorentino M, D’Errico A, Mancini AM, Grigioni WF. Detection of anti-sense transcripts of the insulin-like growth factor-2 gene in Wilms’ tumor. Am J Pathol. 1993;143(6):1535–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  744. Akmal SN, Yun K, MacLay J, Higami Y, Ikeda T. Insulin-like growth factor 2 and insulin-like growth factor binding protein 2 expression in hepatoblastoma. Hum Pathol. 1995;26(8):846–51.

    Article  CAS  PubMed  Google Scholar 

  745. Korkola JE, Houldsworth J, Chadalavada RS, Olshen AB, Dobrzynski D, Reuter VE, et al. Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res. 2006;66(2):820–827. doi:66/2/820 [pii] 10.1158/0008-5472.CAN-05-2445.

    Google Scholar 

  746. Hirasawa R, Feil R. Genomic imprinting and human disease. Essays Biochem 2010;48:187–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wolter Oosterhuis MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Oosterhuis, J.W., Looijenga, L.H.J. (2017). Germ Cell Tumors from a Developmental Perspective: Cells of Origin, Pathogenesis, and Molecular Biology (Emerging Patterns). In: Nogales, F., Jimenez, R. (eds) Pathology and Biology of Human Germ Cell Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53775-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53775-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53773-2

  • Online ISBN: 978-3-662-53775-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics