Skip to main content

The Contributions of Wet, Fog, and Dry Deposition to the Summer SO4 2− Flux at Summit, Greenland

  • Conference paper
Ice Core Studies of Global Biogeochemical Cycles

Part of the book series: NATO ASI Series ((ASII,volume 30))

Abstract

Experiments were performed during May-July of the 1993 field season at Summit, Greenland. Real time concentrations of particles greater than 0.5 μm and greater than 0.01 μm were measured with continuous monitors. Filter samplers were used to determine the dally average aerosol SO4 2− concentrations, and impactors were used to determine mass size distributions. Dry deposition velocities for SO4 2− were estimated using surrogate surfaces (symmetric airfoils) and the airborne size distribution data. Snow and fog samples from nearly all of the events occurring during the field season were collected on polyethylene trays. Impactor and real time concentration data indicate that particles > 0.5 μm efficiently serve as nuclei to form fog droplets. Results also show that condensation nuclei > 0.01 μm (CN) are not as greatly affected by fog. Dry deposition velocity estimates using the airfoils are in the range 0.023 cm/s to 0.062 cm/s, 60% greater than values calculated using the airborne size distribution data with a model for deposition to snow. This could be due to differences in the boundary layer resistances of the airfoils and the modeled snow surface; furthermore, calculations using the impactor results assume no particle growth in the viscous sublayer. The contribution of wet, fog, and aerosol dry deposition to the seasonal SO4 2− inventory is estimated as 58% ± 6%, 25% ± 4%, and 17% ± 7%, respectively. These values do not take into consideration the spatial variability caused by the blowing and drifting of surface snow. Results indicate that all three processes should be considered when estimating atmospheric concentrations based on ice core chemical signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergin MH, Jaffrezo JL, Davidson CI, Caldow R, and Dibb JE (1994) Fluxes of chemical species to the Greenland Ice Sheet at Summit by fog and dry deposition. Geochem et Cosmochim Acta, 58:3207–3215

    Article  CAS  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, and Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–414

    Article  CAS  Google Scholar 

  • Barrie LA, Hoff RM (1985) Five years of air chemistry observations in the Canadian Arctic. Atmos Envir 19/12:1995–2010

    Article  CAS  Google Scholar 

  • Borys RD, Del Vecchio D, Jaffrezo JL, Dibb JE, and Mitchell DL (1992) Field observations, measurements and preliminary results from a study of wet deposition processes influencing snow and ice chemistry at Summit, Greenland. In: Precipitation, Scavenging and Atmospheric Surface Exchange (ed. S. E. Schwartz, W. G. N. Sinn), Vol. 3, pp. 1693–1702. Hemisphere Publishing Corp

    Google Scholar 

  • Dansgaard W, White JWC, and Johnsen SJ (1989) The abrupt termination of the Younger Dryas climate event. Nature 339:532–534

    Article  Google Scholar 

  • Davidson CI, Harrington JR, Stephenson MJ, Small MJ, Boscoe FP, and Gandley RE (1989) Seasonal variations in sulfate, nitrate, and chloride in the Greenland Ice Sheet: Relation to atmospheric concentrations. Atmos Env 23/11:2483–2983

    CAS  Google Scholar 

  • Davidson CI, Jaffrezo JL, Mosher B, Dibb JE, Borys RD, Bodhaine BA, Rasmussen RA, Boutron CF, Gorlach U., Cachier H, Ducret J, Colin JL, Heidam NZ, Kemp K, and Hillamo R (1993a) Chemical constituents in the air and fresh snow at Dye 3, Greenland-I. Seasonal variations. Atmos Env, 27A:2709–2722

    CAS  Google Scholar 

  • Davidson, CI, Jaffrezo JL, Small MJ, Summers PW, Olson MP, and Borys RD (1993b) Trajectory analysis of source regions influencing the South Greenland Ice Sheet during the Dye 3 gas and aerosol sampling program. Atmos Env 27A:2739–2749

    Google Scholar 

  • Dibb JE, Jaffrezo JL, and Legrand M (1992) Initial findings of recent investigations of air-snow relationships in the Summit region of the Greenland Ice Sheet. J Atmos Chem 14:167–180

    Article  CAS  Google Scholar 

  • Hanel G (1987) The role of aerosol properties during the condensational stage of cloud: a reinvestigation of numerics and microphysics. Contrib Atmos Phys, Aug., vol 60/3:321–339

    Google Scholar 

  • Hillamo RE, Kerminen VM, Maenhaut W, Jaffrezo JL, Balachandran S, and Davidson CI (1993) Size distributions of atmospheric trace elements at Dye 3, Greenland-I. Distribution characteristics and dry deposition velocities. Atmos Env 27A:2787–2802

    CAS  Google Scholar 

  • Hinds WC (1982) Aerosol Technology, New York, John Wiley and Sons

    Google Scholar 

  • Ibrahim M, Barrie LA, and Fanaki F (1983) An experimental investigation of the dry deposition of particles to snow, pine trees, and artificial collectors. Atmospheric Environment 93/4:781–788

    Google Scholar 

  • Jaffrezo JL, Davidson CI, Legrand M, and Dibb JE (1994) Sulfate and MSA in the air and snow on the Greenland Ice Sheet. J Geophys Res 99:1241–1254

    Article  CAS  Google Scholar 

  • Jaffrezo JL, Dibb JE, Bales R, Neftel A (1995) Current status of atmospheric studies at Summit (Greenland) and implications for future research. This volume

    Google Scholar 

  • Li S. M., Barrie L. A. (1993) Biosphere sulfur aerosols in the Arctic troposphere: 1. Contributions to total sulfate. J Geophys Res 98:20613–20622

    Article  Google Scholar 

  • Pandis SN, Seinfeld JH, Pilinis C (1990) Chemical composition differences in fog and cloud droplets of different sizes. Atmospheric Environment 24A/7:1957–1969

    CAS  Google Scholar 

  • Peel D (1992) Merely the tip of the ice core. Nature Vol. 359:274–275

    Article  Google Scholar 

  • Taylor KC, Lamorey GW, Doyle GA, Alley RB, Grootes PM, Mayewski PA, White JWC and Barlow LK (1993) The ‘flickering switch’ of late Pleistocene climate change. Nature Vol. 361:432–436

    Article  Google Scholar 

  • Wu YL, Davidson CI, Dolske DA, and Sherwood SI (1992a) Dry deposition of atmospheric contaminants: the relative importance of aerodynamic, boundary layer, and surface resistances. Aerosol Science and Technology 16:65–81

    Article  CAS  Google Scholar 

  • Wu YL, Davidson CI, Russell AG (1992b) A stochastic model for particle deposition and bounceoff. Aerosol Science and Technology 17:233–244

    Google Scholar 

  • ***Peng TH, Broecker WS, Mathieu GG, Li Y-H (1979) Radon evasion rates in the Atlantic and Pacific Oceans as determined during the Geosecs program. J Geophys Res 84:2471–2486

    Article  CAS  Google Scholar 

  • Pszenny AA, Castelle AJ, Galloway JN, Duce RA (1989) A study of the sulfur cycle in the Antarctic marine boundary layer. J Geophys Res 94:9818–9380

    Article  CAS  Google Scholar 

  • Pszenny AP (1992) Particle size distributions of methanesulfonate in the tropical Pacific marine boundary layer. J Atmos Chem 14:273–284

    Article  CAS  Google Scholar 

  • Reed RH (1983) Measurement and osmotic significance of β-dimethyisulphoniopropionate in marine macroalgae. Mar Biol Lett 4:173–181

    CAS  Google Scholar 

  • Saltzman ES, Gidel LT, Zika RG, Milne PJ, Prospero JM, Savoie DL, Coooper WB (1984) Atmospheric chemistry of methane sulfonic acid. In: Environmental Impact of Natural Emissions, ed. VP Aneja, Air Pollut Control Assoc, Pittsburgh

    Google Scholar 

  • Saltzman ES, Cooper DJ (1988) Shipboard measurements of atmospheric dimethylsulfide and hydrogen sulfide in the Caribbean and Gulf of Mexico. J Atmos Chem 7:191–209

    Article  CAS  Google Scholar 

  • Saltzman ES, King DB, Holmen K, Leck C (1993) Experimental determination of the diffusion coefficient of dimethylsulfide in water. J Geophys Res 98:16481–16486

    Article  Google Scholar 

  • Saltzman ES, Savoie DL, Zika RG, Prospero JM (1983) Methane sulfonic acid in the marine atmosphere. J Geophys Res 88:10897–10902

    Article  CAS  Google Scholar 

  • Saltzman ES, Savoie DL, Prospero JM, Zika RG (1985) Methanesulfonic acid and non-sea-salt sulfate in Pacific air: Regional and seasonal variations. J Atmos Chem 4:227–240

    Google Scholar 

  • Savoie DL, Arimoto R, Prospero JM, Duce RA, Graustem WC, Turekian KK, Galloway JN, Keene WC (1995) Oceanic and anthropogenic contributions to non-sea-salt sulfate in the marine boundary layer over the north Atlantic Ocean. J Geophys Res, in press

    Google Scholar 

  • Savoie DL, Prospero JM (1989) Comparison of oceanic and continental sources of non-sea-salt sulphate over the Pacific Ocean. Nature 339:685–687

    Article  CAS  Google Scholar 

  • Savoie DL, Prospero JM, Larsen RJ, Saltzman ES (1992) Nitrogen and sulfur species in aerosols at Mawson, Antarctica, and their relationship to natural radionuclides. J Atm Chem 14:181–204

    Google Scholar 

  • Shaw GE (1983) Bio-controlled thermostasis involving the sulfur cycle. Climatic Change 5:297–303

    Article  CAS  Google Scholar 

  • Shooter D, Brimblecombe P (1989) Dimethylsulphide oxidation in the ocean. Deep Sea Res 36:577–585

    Article  CAS  Google Scholar 

  • Sievering H, Boatman J, Gorman E, Kim Y, Anderson L, Ennis G, Luria M, Pandis S (1992) Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols. Nature 360:571–573

    Article  CAS  Google Scholar 

  • Sievering H, Boatman J, Galloway H, Keene W, Kim Y, Luria M, Ray J (1991) Heterogeneous sulfur conversion in sea-salt aerosol particles: the role of aerosol water content and size distribution. Atmos Env 25A:1479–1487

    CAS  Google Scholar 

  • Smethie WM Jr., Takahashi T, Chipman DW, Ledwell JR (1985) Gas exchange and CO2 flux in the tropical Atlantic Ocean determined from 222Rn and P<Subscript>CO<Subscript>2</Subscript></Subscript> measurements. J Geophys Res 90:7005–7022

    Article  CAS  Google Scholar 

  • Stefels J, van Boekel J (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp, In: Interactions of Phaeocycstis SP with organic compounds and the microbial foodweb, van Boekel, PhD Thesis, Rijksuniversiteit Groningen

    Google Scholar 

  • Suylen GMH, Stefess GC, Kuenen JG (1986) Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulfur compounds. Arch Microbiol 146:192–198

    Article  CAS  Google Scholar 

  • Thorpe SA (1982) On the clouds of bubbles formed by breaking wind-waves in deep water and their role in air-sea gas transfer. Phil Trans R Soc Lond A304:155–210

    Article  Google Scholar 

  • Toon OB, Kasting JB, Turco RP, Liu MS (1987) The sulfur cycle in the marine atmosphere. J Geophys Res 92:943–963

    Article  CAS  Google Scholar 

  • Turner SM, Malin G, Liss PS, Harbour DS, Holligan PM (1988) The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol Oceanogr 33:364–375

    Article  CAS  Google Scholar 

  • Vairavamurthy A, Andreae MO, Iverson RL (1985) Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol and Oceanogr 30:59–70

    Article  CAS  Google Scholar 

  • Visscher PT, Diaz MR, Taylor BF (1992) Enumeration of bacteria which cleave or demethylate dimethyl-sulfoniopropionate in the Caribbean Sea. Mar Ecol Prog Ser 89:293–296

    Article  Google Scholar 

  • Wanninkhof R, Ledwell JR, Broecker WS (1985) Gas exchange-wind speed relation measured with sulfur hexafluoride on a lake. Science 227:1224–1226

    Article  CAS  Google Scholar 

  • Wanninkhof R (1992) Relationship between gas exchange and wind speed over the ocean. J Geophys Res 97:7373–7381

    Article  Google Scholar 

  • Wanninkhof R, Asher W, Weppering R, Chen H, Schlosser P, Langdon C, Sambrotto R (1993) Gas transfer experiment on Georges Bank using two volatile deliberate tracers. J Geophys Res 98:20237–20248

    Article  Google Scholar 

  • Watson AJ, Upstill-Goddard RS, Liss PS (1991) Air-sea gas exchange in rough and stormy seas measured by a dual-tracer technique. Nature 349:145–147

    Article  CAS  Google Scholar 

  • Whung P-Y, Saltzman ES, Spencer MJ, Mayewski PM, Gundestrup N (1994) A two hundred years record of biogenic sulfur in a south Greenland ice core (20D). J Geophys Res, 99:1147–1156

    Article  CAS  Google Scholar 

  • Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270

    Article  CAS  Google Scholar 

  • Yin F-D, Grosjean D, Seinfeld JH (1990) Photooxidation of dimethyl sulfide and dimethyl disulfide: I: Mechanism development. J Atmos Chem 11:309–364

    Google Scholar 

  • Yin F-D, Grosjean D, Flagan RC, Seinfeld JH (1990) Photooxidation of dimethyl sulfide and dimethyl disulfide. II: Mechanism evaluation. J Atmos Chem 11:365–399

    Google Scholar 

  • Young RW, Carder KL, Betzer PR, Costello DK, Duce RA, DiTullio GR, Tindale N, Laws EA, Uematsu M, Merrill JT, Feely RA (1993) Atmospheric iron inputs and primary productivity: phytoplankton responses in the North Pacific. Global Biogeochem Cycles, in press

    Google Scholar 

  • Yvon SA, Saltzman ES, Cooper DJ, Bates TS, Thompson AM (1995) Atmospheric dimethylsulfide cycling at a tropical South Pacific station (12°S, 135°N): a comparison of field data and model results. J Geophys Res, in press

    Google Scholar 

  • Yvon SA, Saltzman ES, Cooper DJ (1992) Measurements of atmospheric DMS, SO2, and H2S over the equatorial Pacific during IGAC/MAGE. EOS Trans Am Geophys Union 73:81

    Google Scholar 

  • Yvon SA, Saltzman ES, Cooper DJ (1993) Atmospheric hydrogen sulfide over the equatorial Pacific (SAGA-3). J Geophys Res 98:16979–16983

    Article  CAS  Google Scholar 

  • Zinder SH, Brock TD (1978) Dimethyl sulfoxide reduction by microorganisms. J Gen Microbiol 105:335–342

    CAS  Google Scholar 

  • Zhu XR, Prospero JM, Savoie DL, Huang F, Huang T (1993) Particle size distributions of nitrate, non-sea-salt sulfate, methanesulfonate and sea-salt at Barbados

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergin, M.H. et al. (1995). The Contributions of Wet, Fog, and Dry Deposition to the Summer SO4 2− Flux at Summit, Greenland. In: Delmas, R.J. (eds) Ice Core Studies of Global Biogeochemical Cycles. NATO ASI Series, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51172-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51172-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51174-5

  • Online ISBN: 978-3-642-51172-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics