Skip to main content

New Treatise in Fractional Dynamics

  • Chapter
Complex Systems

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

Abstract

Fractional calculus becomes a powerful tool used to investigate complex phenomena from various fields of science and engineering. In this context, the researchers paid a lot of attention for the fractional dynamics. However, the fractional modeling is still at the beginning of its developing. The aim of this chapter is to present some new results in the area of fractional dynamics and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal O.P., 2002, Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272, 368–379.

    Article  MATH  MathSciNet  Google Scholar 

  • Agrawal O.P., 2004, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynamics, 38, 191–206.

    Article  MATH  Google Scholar 

  • Agrawal O.P., 2006, Fractional variational calculus and the transversahty conditions, Journal of Physics A:Mathematical and General, 39, 10375–10384.

    Article  MATH  ADS  Google Scholar 

  • Agrawal O.P., 2007, Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative, Journal of Vibration and Control, 13, 1217–1237.

    Article  MATH  MathSciNet  Google Scholar 

  • Agrawal O.P. and Baleanu D., 2007, Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems, Journal of Vibration and Control, 13, 1269–1281.

    Article  MATH  MathSciNet  Google Scholar 

  • Alvarez-Gaume L. and Barbon J.L.F., 2001, Gauge theory on a quantum phase space, International Journal of Modern Physics A, 16, 1123–1134.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Baleanu D., 2004, Constrained systems and Riemann-Liouville fractional derivative, Proceedings of 1st IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux, France, July 19-21, 597–601.

    Google Scholar 

  • Baleanu D., 2006, Fractional Hamiltonian analysis of irregular systems, Signal Processing, 86, 2632–2636.

    Article  MATH  Google Scholar 

  • Baleanu D., 2008, New applications of fractional variational principles, Reports on Mathematical Physics, 61, 199–206.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Baleanu D., 2009, About fractional quantization and fractional variational principies, Communications in Nonlinear Science and Numerical Simulation, 14, 2520–2523.

    Article  ADS  Google Scholar 

  • Baleanu D. and Agrawal O.P., 2006, Fractional Hamilton formalism within Caputo’s derivative, Czechoslovak Journal of Physics, 56, 1087–1092.

    Article  ADS  MathSciNet  Google Scholar 

  • Baleanu D. and Avkar T., 2004, Lagrangians with linear velocities within Riemann Liouville fractional derivatives, Nuovo Cimento B, 119,73–79.

    ADS  Google Scholar 

  • Baleanu D. and Trujillo J.J., 2008, On exact solutions of a class of fractional Euler Lagrange equations, Nonlinear Dynamics, 52,331–335.

    Article  MATH  MathSciNet  Google Scholar 

  • Baleanu D. and Muslih S.I., 2005a, About fractional supersymmetric quantum mechanics, Czechoslovak Journal of Physics, 55, 1063–1066.

    Article  ADS  MathSciNet  Google Scholar 

  • Baleanu D. and Muslih S.I., 2005b, Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, Physica Scripta, 72, 119–121.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Baleanu D., Defterli O. and Agrawal O.P., 2009, A central difference numerical scheme for fractional optimal control problems, Journal of Vibration and Controls 15, 583–597.

    Article  MathSciNet  Google Scholar 

  • Baleanu D., Golmankhaneh A.K. and Golmankhaneh A.K., 2009a, The dual action of fractional multi time Hamilton equations, International Journal of Theoretical Physics, 48, 2558–2569.

    Article  MATH  ADS  Google Scholar 

  • Baleanu D., Golmankhaneh A.K. and Golmankhaneh A.K., 2009b, Fractional Nambu mechanics, International Journal of Theoretical Physics, 48, 1044–1052.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Baleanu D., Maaraba T. and Jarad F., 2008a, Fractional variational principles with delay, Journal of Physics A:Mathematical and Theoretical, 41, Art. No. 315403.

    Article  ADS  MathSciNet  Google Scholar 

  • Baleanu D., Muslih S.I. and Rabei E.M., 2008b, On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative, Nonlinear Dynamics, 53, 67–74.

    Article  MATH  MathSciNet  Google Scholar 

  • Baleanu D., Muslih S.I. and Tas K., 2006, Fractional Hamiltonian analysis of higher order derivatives systems, Journal of Mathematical Physics, 47, Art. No.103503.

    Article  ADS  MathSciNet  Google Scholar 

  • Barbosa R.S., Machado J.A.T. and Ferreira I.M., 2004, Tuning of PID controllers based on Bode’s ideal transfer function, Nonlinear Dynamics, 38, 305–321.

    Article  MATH  Google Scholar 

  • Birell N.D. and Davies P.C.W., 1982, Quantum Field in Curved Space, Cambridge University Press, Cambridge

    Google Scholar 

  • Caputo M., 2001, Distributed order differential equations modelling dielectric induction and diffusion, Fractional Calculus and Applied Analysis, 4, 421–442.

    MATH  MathSciNet  Google Scholar 

  • Carpinteri A. and Mainardi F. (Eds), 1997, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Berlin

    MATH  Google Scholar 

  • Chen Y.Q., Vinagre B.M. and Podlubny I., 2004, Continued fraction expansion approaches to discretizing fractional order derivatives — an expository review, Nonlinear Dynamics, 38, 155–170.

    Article  MATH  MathSciNet  Google Scholar 

  • Dinç; E. and Baleanu D., 2004a, Application of the wavelet method for the simultaneous quantitative determination of benazepril and hydrochlorothiazide in their mixtures, Journal of AOAC International, 87, 834–841.

    Google Scholar 

  • Dinç; E. and Baleanu D., 2004b, Multicomponent quantitative resolution of binary mixtures by using continuous wavelet transform, Journal of AOAC International, 87, 360–365.

    Google Scholar 

  • Dinç; E. and Baleanu D., 2006, A new fractional wavelet approach for simultaneous determination of sodium and sulbactam sodium in a binary mixture, Spectrochimica Acta Part A, 63, 631–638.

    Article  ADS  Google Scholar 

  • Dinç, E. and Baleanu D., 2007, A review on the wavelet transform applications in analytical chemistry, Mathematical Methods in Engineering, Springer, Eds. K. Tas, J.A. Tenreiro Machado, D. Baleanu, pp. 265–285.

    Google Scholar 

  • Dinç; E. and Baleanu D., 2010, Fractional wavelet transform for the quantitative spectral resolution of the composite signals of the active compounds in a two-component mixture, Communications in Nonlinear Science and Numerical Simulation, 15, 812–818.

    Article  ADS  Google Scholar 

  • Dinç; E., Baleanu D. and Ustundag O., 2003, An approach to quantitative two-component analysis of a mixture containing hydrochlorothiazide and spirono-lactone in tablets by one-dimensional continuous Daubechies and biorthogonal wavelet analysis of UV-spectra, Spectroscopy Letters, 36, 341–355.

    Article  ADS  Google Scholar 

  • Dong J.P. and Xu M.Y., 2008, Space-time fractional Schrödinger equation with time-independent potentials, Journal of Mathematical Analysis and Applications, 344, 1005–1017.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Fogleman M.A., Fawcett M.J. and Solomon T.H., 2001, Lagrangian chaos and correlated Lévy flights in a non-Beltrami flow: Transient versus-long term transport, Physical Review E, 63, 020101–1.

    Article  ADS  Google Scholar 

  • Gelfand I.M. and Shilov G.E., 1964, Generalized Functions, Vol.I, Properties and Operators, Accademic Press, New York.

    Google Scholar 

  • Gitman D.M. and Tytin I.V., 1990, Quantization of fields with constraints, Springer, Berlin.

    MATH  Google Scholar 

  • Gomis J. and Mehen T., 2000, Space-time noncommutative field theories and unitarity, Nuclear Physics B, 591, 265–276.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Gomis J., Kamimura K. and Llosa J., 2001, Hamiltonian formalism for space-time noncommutative theories, Physical Review D, 63, 045003.

    Article  ADS  MathSciNet  Google Scholar 

  • Gomis J., Kamimura K., Ramirez T. and Gomis J., 2004, Physical degrees of freedom of non-local theories, Nuclear Physics B, 696, 263–275.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Gorenflo R. and Mainardi F., 1997, Fractional Calculus: Integral and Differential; Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien and New York

    Google Scholar 

  • Hardy G.H., 1945, Riemann’s form of Taylor’s series, Journal of the London Mathematical Society, 20, 48–56.

    Article  MATH  MathSciNet  Google Scholar 

  • Heymans N. and Podlubny I., 2006, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheologica Acta, 45, 765–771.

    Article  Google Scholar 

  • Hilfer R., 2000, Applications of Fractional Calculus in Physics, World Scientific Publishing Company, Singapore.

    Book  MATH  Google Scholar 

  • Jesus I.S. and Machado J.A.T., 2008, Fractional control of heat diffusion systems, Nonlinear Dynamics, 54, 263–282.

    Article  MATH  MathSciNet  Google Scholar 

  • Jumarie G., 2009, From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series, Chaos Solitons and Fractals, 41, 1590–1604.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kilbas A.A., Srivastava H.H. and Trujillo J.J., 2006, Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) Elsevier Science, Amsterdam.

    Google Scholar 

  • Klimek M., 2001, Fractional sequential mechanics — models with symmetric fractional derivative Czechoslovak Journal of Physics, 51, 1348–1354.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Klimek M., 2002, Lagrangean and Hamiltonian fractional sequential mechanics, Czechoslovak Journal of Physics, 52, 1247–1253.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Lakshmikantham V., Leela S. and Vasundhara Devi J., 2009, Theory of Fractional; Dynamic Systems, Cambridge Scientific Publishers Ltd., Cambridge.

    MATH  Google Scholar 

  • Lim S.C. and Teo L.P., 2009, The fractional oscillator process with two indices, Journal of Physics A:Mathematical and Theoretical, 42, Art. No. 065208.

    Article  ADS  MathSciNet  Google Scholar 

  • Lim S.C. and Muniandy S.V., 2004, Stochastic quantization of nonlocal fields, Physics Letters A, 324, 396–405.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Llosa J. and Vives J., 1994, Hamiltonian-formalism for nonlocal Lagrangians, Journal of Mathematical Physics, 35, 2856–2877.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Lorenzo C.F. and Hartley T.T., 2004, Fractional trigonometry and the spiral functions, Nonlinear Dynamics, 38, 23–34.

    Article  MATH  MathSciNet  Google Scholar 

  • Magin R.L., 2000, Fractional Calculus in Bioengineering, Begell House Publisher, Connecticut.

    Google Scholar 

  • Magin R., Feng X. and Baleanu D., 2009, Solving the fractional order bloch equation, Concepts in Magnetic Resonance Part A, 34A, 16–23.

    Article  Google Scholar 

  • Magin R.L., Abdullah O., Baleanu D. and Zhou X.H.J., 2008, Anomalous diffu-I sion expressed through fractional order differential operators in the Bloch-Torrey equation, Journal of Magnetic Resonance, 190, 255–270.

    Article  ADS  Google Scholar 

  • Mainardi F., 1996, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, 7, 1461–1476.

    MATH  MathSciNet  Google Scholar 

  • Mainardi F., Luchko Yu. and Pagnini G., 2001, The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and Applied Analysis, 4, 153–192.

    MATH  MathSciNet  Google Scholar 

  • Maraaba T.A., Baleanu D. and Jarad F., 2008a, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, Journal of Mathematical Physics, 49, Art. No. 083507.

    Article  ADS  MathSciNet  Google Scholar 

  • Maraaba T.A., Jarad F. and Baleanu D., 2008b, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Science in China Series A-Mathematics, 51, 1775–1786.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Metzler R., SChick W., Kilian H.G. and Nonennmacher T.F., 1995, Relaxation in filled polymers: A fractional calculus approach, Journal of Chemical Physics; 103, 160137–1.

    Article  Google Scholar 

  • Miller K.S. and Ross B., 1993, An Introduction to the Fractional Integrals and Derivatives-Theory and Applications, John Wiley and Sons Inc., New York

    Google Scholar 

  • Momani S., 2006, A numerical scheme for the solution of multi-order fractional differential equations, Applied Mathematics and Computation, 182, 761–786.

    Article  MATH  MathSciNet  Google Scholar 

  • Muslih S.I. and Baleanu D., 2005a, Hamiltonian formulation of systems with Iinear velocities within Riemann-Liouville fractional derivatives, Journal of Mathematical Analysis and Applications, 304, 599–606.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Muslih S.I. and Baleanu D., 2005b, Quantization of classical fields with fractional derivatives, Nuovo Cimento B, 120, 507–512.

    ADS  MathSciNet  Google Scholar 

  • Muslih S.I. and Baleanu D., 2005c, Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives, Journal of Mathematical Analysis and Applications, 304, 599–606.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Naber M., 2004, Time fractional Schrödinger equation, Journal of Mathematical Physics, 45, 3339–3352.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Nesterenko V.V., 1989, Singular Lagrangians with higher deratives, J. Phy. A-Math. Gen., 22, 1673–1687.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Nigmatullin R.R. and Mehaute A.L., 2005, Is there geometrical/physical meaning of the fractional integral with complex exponent? Journal of Non-Crystalline Solids, 351, 2888–2899.

    Article  ADS  Google Scholar 

  • Oldham K.B. and S’panier, J., 1974, The Fractional Calculus, Academic Press, New York.

    MATH  Google Scholar 

  • Pais A. and Uhlenbeck G.E., 1950, On field theories with non-localized action, Physical Review, 79, 145–165.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Podlubny I., 1999, Fractional Differential Equations, Academic Press, San Diego CA.

    MATH  Google Scholar 

  • Rabei E.M., Nawafleh K.I., Hijjawi R.S., Muslih S.I. and Baleanu D., 2007, The Hamilton formalism with fractional derivatives, Journal of Mathematical Analysis and Applications, 327, 891–897.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Rabei E.M., Altarazi I.M.A., Muslih S.I. and Baleanu D., 2009, Fractional WKB approximation, Nonlinear Dynamics, 57, 171–175.

    Article  MATH  MathSciNet  Google Scholar 

  • Raspini A., 2001, Simple solutions of the fractional Dirac equation of order 2/3, Physica Scripta, 64, 20–22.

    Article  MATH  ADS  Google Scholar 

  • Riewe F., 1996, Nonconservative Lagrangian and Hamiltonian mechanics, Physical Review E, 53, 1890–1899.

    Article  ADS  MathSciNet  Google Scholar 

  • Riewe F., 1997, Mechanics with fractional derivatives, Physical Review E, 55, 3581–3592

    Article  ADS  MathSciNet  Google Scholar 

  • Samko S.G., Kilbas A.A. and Marichev O.I., 1993, Fractional Integrals and Derivatives — Theory and Applications, Gordon and Breach, Linghome.

    MATH  Google Scholar 

  • Scalas E., Gorenflo R. and Mainardi F., 2004, Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation, Physical Review E, 69, 011107–1.

    Article  ADS  MathSciNet  Google Scholar 

  • Seiberg N., Susskind L. and Toumbas T., 2000, Strings in background electric field, space/time noncommutativity and a new noncritical string theory, Journal of High; Energy Physics, 6, Art. No. 021.

    Article  ADS  MathSciNet  Google Scholar 

  • Silva M.F., Tenreiro-Machado J.A.T. and Barbosa R.S., 2008, Using fractional derivatives in joint control of hexapod robots, Journal of Vibration and Control, 14, 1473–1485.

    Article  MathSciNet  Google Scholar 

  • Simon J.Z., 1990, Higher-derivative Lagrangians, nonlocality, problems and Solutions, Physical Review D, 41, 3720–3733.

    Article  ADS  MathSciNet  Google Scholar 

  • Solomon T.H., Weeks E.R. and Swinney H.L., 1993, Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow, Physical Review Letters, 71, 3975–3978.

    Article  ADS  Google Scholar 

  • Tarasov V.E., 2005, Continuous medium model for fractal media, Physics Letters A, 336, 167–174.

    Article  MATH  ADS  Google Scholar 

  • Tarasov V.E., 2006, Fractional statistical mechanics, Chaos, 16, 033108–033115.

    Article  ADS  MathSciNet  Google Scholar 

  • Tarasov V.E. and Zaslavsky G.M., 2006, Nonholonomic constraints with fractional derivatives, Journal of Physics A:Mathematical and General, 39, 9797–9815.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Tenreiro Machado, J.A., 2001, Discrete-time fractional-order controllers, Fractional Calculus and Applied Analysis, 4, 47–66.

    MATH  MathSciNet  Google Scholar 

  • Tenreiro Machado J. A., 2003, A probabilistic interpretation of the fractional order differentiation, Fractional Calculus and Applied Analysis, 6, 73–81.

    MATH  MathSciNet  Google Scholar 

  • Trujillo J.J., 1999, On a Riemann-Liouville generalized Taylor’s formula, Journal of Mathematical Analysis and Applications, 231, 255–264.

    Article  MATH  MathSciNet  Google Scholar 

  • Unser M. and Blu T., 1999, Construction of fractional spline wavelet bases, in proc. SPIE Wavelets Applications in Signal and Image Processing VII, Denver, CO, 3813, 422–431.

    ADS  Google Scholar 

  • Unser M. and Blu T., 2000a, Fractional splines and wavelets, SIAM Review, 42, 43–67.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Unser M. and Blu T., 2000b, The fractional spline wavelet transform: definition and implementation, Proceedings of the Twenty-Fifth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’00), Istanbul, Turkey, June 5-9, vol. I, pp. 512–515.

    Google Scholar 

  • Unser M. and Blu T., 2002, Wavelets, fractals, and radial basis functions, IEEE Transactions on Signal Processing, 50, 543–553.

    Article  ADS  MathSciNet  Google Scholar 

  • Walczak B., 2000, Wavelets in Chemistry, Elsevier Press, Amsterdam.

    Google Scholar 

  • West B.J., Bologna M. and Grigolini P., 2003, Physics of Fractal Operators, Springer, New York.

    Google Scholar 

  • Zaslavsky G.M., 2002, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371, 461–580.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Zaslavsky G., 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baleanu, D. (2011). New Treatise in Fractional Dynamics. In: Luo, A.C.J., Sun, JQ. (eds) Complex Systems. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17593-0_1

Download citation

Publish with us

Policies and ethics