Skip to main content
Log in

Fractional WKB approximation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Wentzel–Kramer–Brillouin (WKB) approximation for fractional systems is investigated in this paper using the fractional calculus. In the fractional case, the wave function is constructed such that the phase factor is the same as the Hamilton’s principle function S. To demonstrate our proposed approach, two examples are investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach, Linghorne (1993)

    MATH  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  3. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Connecticut (2006)

    Google Scholar 

  4. Tenreiro Machado, J.A.: A probabilistic interpretation of the fractional-order differentiation. Fractional Calc. Appl. Anal. 8, 73–80 (2003)

    MathSciNet  Google Scholar 

  5. Mainardi, F., Luchko, Yu., Pagnini, G.: The fundamental solution of the space–time fractional diffusion equation. Fractional Calc. Appl. Anal. 4(2), 153 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  7. Tofighi, A.: The intrinsic damping of the fractional oscillator. Physica A 329, 29–34 (2006)

    Article  Google Scholar 

  8. Stanislavsky, A.A.: Fractional oscillator. Phys. Rev. E 70, 051103 (2004)

    Article  Google Scholar 

  9. Klimek, M.: Fractional sequential mechanics-models with symmetric fractional derivatives. Czech. J. Phys. 1, 1348–1354 (2001)

    Article  MathSciNet  Google Scholar 

  10. Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 52, 1247–1253 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Riewe, F.: Non-conservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  13. Rabei, E.M., Alhalholy T.S. and Rousan, A.A.: Potential of arbitrary forces with fractional derivatives. Int. J. Mod. Phys. A 19:17&18, 3083–3092 (2004)

    Article  MATH  Google Scholar 

  14. Rabei, E.M., Ajlouni, A., Ghassib, H.B.: Quantisation of Brownian motion. Int. J. Theor. Phys. 45, 1613–1623 (2005)

    Article  MathSciNet  Google Scholar 

  15. Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rabei, E.M., Ababneh, B.S.: Hamilton–Jacobi fractional sequential mechanics. Preprint, hep-th/07040519

  17. Rabei, E.M., Hasan, E.H., Ghassib, H.B.: Hamilton–Jacobi treatment of constrained systems with second-order Lagrangians. Int. J. Theor. Phys. 43(4), 1073–1096 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rabei, E.M., Nawafleh, K.I., Abdelrahman, Y.S., Omari, H.Y.R.: Hamilton–Jacobi treatment of Lagrangians with linear velocities. Mod. Phys. Lett. A 18, 1591–1596 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rabei, E.M., Eyad, H., Hasan, E.H., Ghassib, H.B., Muslih, S.I.: Quantisation of second-order constrained Lagrangian systems using the WKB approximation. Int. J. Geom. Methods Mod. Phys. 2, 1–20 (2005)

    Article  MathSciNet  Google Scholar 

  20. Nawafleh, K.I., Rabei, E.M., Ghassib, H.B.: Hamilton–Jacobi treatment of constrained systems. Int. J. Mod. Phys. A 19, 347–354 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rabei, E.M., Nawafleh, K.I., Ghassib, H.B.: Quantisation of constrained systems using the WKB approximation. Phys. Rev. A 66, 24101–24011 (2002)

    Article  Google Scholar 

  22. Griffiths, D.J.: Introduction to Quantum Mechanics. Prentice-Hall, New Jersey (1995)

    MATH  Google Scholar 

  23. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabei, E.M., Altarazi, I.M.A., Muslih, S.I. et al. Fractional WKB approximation. Nonlinear Dyn 57, 171–175 (2009). https://doi.org/10.1007/s11071-008-9430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9430-7

Keywords

Navigation