Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1937))

A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we present numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti–Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Aumaître, J. Farago, S. Fauve, and S. McNamara. Energy and poweer fluctuations in vibrated granular gases. Eur. Phys. J. B, 42:255, 2004.

    Article  Google Scholar 

  2. S. Aumaître, S. Fauve, S. McNamara, and P. Poggi. Power injected in dissipative systems and the fluctuation theorem. Eur. Phys. J. B, 19:449–460, 2001.

    Article  Google Scholar 

  3. J. J. Brey and D. Cubero. Steady state of a fluidized granular medium between two walls at thesame temperature. Phys. Rev. E, 57(2):2019–2029, 1998.

    Article  Google Scholar 

  4. J. J. Brey and D. Cubero. Hydrodynamic transport coefficients of granular gases. In T. Pöschel and S. Luding, editors, Granular Gases, pages 59–79, Berlin, 2001. Springer.

    Chapter  Google Scholar 

  5. A. V. Bobylev, J. A. Carrillo, and I. M. Gamba. On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys., 98:743, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos. Hydrodynamics for granular flow at low density. Phys. Rev. E, 58(4):4638, 1998.

    Article  Google Scholar 

  7. J. J. Brey, M. I. G. de Soria, P. Maynar, and M. J. Ruiz-Montero. Energy fluctuations in the homogeneous cooling state of granular gases. Phys. Rev. E, 70(011302), 2004.

    Google Scholar 

  8. J. J. Brey, M. I. G. de Soria, P. Maynar, and M. J. Ruiz-Montero. Scaling and universality of critical fluctuations in granular gases. Phys. Rev. Lett., 94:098001, 2005.

    Article  Google Scholar 

  9. E. Bertin. Global fluctuations and gumbel statistics. cond-mat/ 0506166, to appear on Phys. Rev. Lett., 2005.

    Google Scholar 

  10. F. Bonetto, G. Gallavotti, A. Giuliani, and F. Zamponi. Chaotic hypothesis, fluctuation theorem and singularities. cond-mat/0507672, 2005.

    Google Scholar 

  11. S. T. Bramwell, P. C. W. Holdsworth, and J.-F. Pinton. Universality of rare fluctuations in turbulence and critical phenomena. Nature, 396:552–554, 1998.

    Article  Google Scholar 

  12. G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford, 1994.

    Google Scholar 

  13. D. L. Blair and A. Kudrolli. Collision statistics of driven granular materials. Phys. Rev. E, 67:041301, 2003.

    Article  Google Scholar 

  14. A. Baldassarri, U. Marini Bettolo Marconi, and A. Puglisi. Influence of correlations on the velocity statistics of scalar granular gases. Europhys. Lett., 58:14–20, 2002. cond-mat/0111066.

    Article  Google Scholar 

  15. E. Ben-Naim and P. L. Krapivsky. Nontrivial velocity distributions in inelastic gases. J. Phys. A: Math. Gen., 35:L147–L152, 2002. cond-mat/0111044.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Ben-Naim and P. L. Krapivsky. The inelastic maxwell model. In Lecture Notes in Physics, volume 624, page 65, Berlin, 2003. Springer. cond-mat/0301238.

    Google Scholar 

  17. J. Javier Brey, M. J. Ruiz-Montero, and F. Moreno. Boundary conditions and normal state for a vibrated granular fluid. Phys. Rev. E, 62:5339–5346, 2000.

    Article  Google Scholar 

  18. A. Barrat and E. Trizac. Molecular dynamics simulations of vibrated granular gases. Phys. Rev. E, 66(5):051303, 2002. cond-mat/0207267.

    Article  Google Scholar 

  19. A. Barrat, E. Trizac, and M. H. Ernst. Granular gases: dynamics and collective effects. J. Phys. Condens. Matter, 17:S2429, 2005.

    Article  Google Scholar 

  20. S. Chapman and T. G. Cowling. The mathematical theory of nonuniform gases. Cambridge University Press, London, 1960.

    Google Scholar 

  21. F. Coppex, M. Droz, J. Piasecki, and E. Trizac. On the first sonine correction for granular gases. Physica A, 329:114, 2003.

    Article  MATH  Google Scholar 

  22. G. Costantini, A. Puglisi, and U. Marini Bettolo Marconi. Velocity fluctuations in a one dimensional inelastic Maxwell model. J. Stat. Mech., page P08031, 2007.

    Google Scholar 

  23. S. R. de Groot and P. Mazur. Non-equilibrium thermodynamics. North-Holland, Amsterdam, 1969.

    Google Scholar 

  24. M. H. Ernst and R. Brito. High-energy tails for inelastic maxwell models. Europhys. Lett., 58:182, 2002.

    Article  Google Scholar 

  25. M. H. Ernst and E. G. D. Cohen. Nonequilibrium fluctuations in μ-space. J. Stat. Phys, 25(1):153, 1981.

    Article  MathSciNet  Google Scholar 

  26. D. J. Evans, E. G. D. Cohen, and G. P. Morriss. Probability of second law violations in shearing steady states. Phys. Rev. Lett., 71:2401, 1993.

    Article  MATH  Google Scholar 

  27. D. J. Evans and D. J. Searles. Equilibrium microstates which generate second law violating steady states. Phys. Rev. E, 50:1645, 1994.

    Article  Google Scholar 

  28. D. J. Evans and D. J. Searles. The fluctuation theorem. Adv. Phys., 51:1529, 2002.

    Article  Google Scholar 

  29. D. J. Evans, D. J. Searles, and L. Rondoni. Application of the gallavotti-cohen fluctuation relation to thermostated steady states near equilibrium. Phys. Rev. E, 71:056120, 2005.

    Article  MathSciNet  Google Scholar 

  30. J. Farago. Injected power fluctuations in langevin equation. J. Stat. Phys., 107:781, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Farago. Power fluctuations in stochastic models of dissipative systems. Physica A, 331:69–89, 2004.

    Article  Google Scholar 

  32. W. Feller. Probability Theory and its Applications. John Wiley & Sons, New York, 1971.

    MATH  Google Scholar 

  33. K. Feitosa and N. Menon. Fluidized granular medium as an instance of the fluctuation theorem. Phys. Rev. Lett, 92:164301, 2004.

    Article  Google Scholar 

  34. G. Gallavotti and E. G. D. Cohen. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett., 74:2694, 1995.

    Article  Google Scholar 

  35. E. L. Grossman, T. Zhou, and E. Ben-Naim. Towards granular hydrodynamics in two-dimensions. Phys. Rev. E, 55:4200, 1997.

    Article  Google Scholar 

  36. C. Henrique, G. Batrouni, and D. Bideau. Diffusion as mixing mechanism in granular materials. Phys. Rev. E, 63:011304, 2000. cond-mat/0003354.

    Article  Google Scholar 

  37. O. Herbst, P. M. Müller, and A. Zippelius. Local heat flux and energy loss in a 2d vibrated granular gas. cond-mat/0412334, 2004.

    Google Scholar 

  38. V. Kumaran. Temperature of a granular material “fluidized” by external vibrations. Phys. Rev. E, 57(5):5660–5664, 1998.

    Article  MathSciNet  Google Scholar 

  39. J. Kurchan. Fluctuation theorem for stochastic dynamics. J. Phys. A., 31:3719, 1998.

    MathSciNet  Google Scholar 

  40. J. L. Lebowitz and H. Spohn. A gallavotti-cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys., 95:333, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  41. C. Maes. The fluctuation theorem as a gibbs property. J. Stat. Phys., 95:367, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  42. J. C. Maxwell. On the dynamical theory of gases. Phil. Trans., 157: 49, 1867.

    Article  Google Scholar 

  43. S. McNamara and J.-L. Barrat. The energy flux into a fluidized granular medium at a vibrating wall. Phys. Rev. E, 55:7767, 1997.

    Article  Google Scholar 

  44. S. McNamara and S. Luding. Energy flows in vibrated granular media. Phys. Rev. E, 58:813–822, 1998.

    Article  Google Scholar 

  45. P. A. Martin and J. Piasecki. Thermalization of a particle by dissipative collisions. Europhys. Lett., 46(5):613, 1999.

    Article  Google Scholar 

  46. José Maria Montanero and Andrés Santos. Computer simulation of uniformly heated granular fluids. Granular Matter, 2(2):53–64, 2000. cond-mat/0002323.

    Article  Google Scholar 

  47. S. J. Moon, M. D. Shattuck, and J. B. Swift. Velocity distribution and correlations in homogeneously heated granular media. Phys. Rev. E, 64:031303, 2001. cond-mat/0105322.

    Article  Google Scholar 

  48. A. Puglisi, A. Baldassarri, and V. Loreto. Fluctuation-dissipation relations in driven granular gases. Phys. Rev. E, 66:061305, 2002. cond-mat/0206155.

    Article  Google Scholar 

  49. A. Puglisi, A. Baldassarri, and A. Vulpiani. Violation of the Einstein relation in granular fluids: the role of correlations. J. Stat. Mech., page P08016, 2007.

    Google Scholar 

  50. A. Puglisi, V. Loreto, U. M. B. Marconi, A. Petri, and A. Vulpiani. Clustering and non-gaussian behavior in granular matter. Phys. Rev. Lett., 81:3848, 1998.

    Article  Google Scholar 

  51. G. Peng and T. Ohta. Steady state properties of a driven granular medium. Phys. Rev. E, 58:4737–46, 1998. cond-mat/9710119.

    Article  Google Scholar 

  52. A. Puglisi, L. Rondoni, and A. Vulpiani. Relevance of initial and final conditions for the fluctuation relation in Markov processes. J. Stat. Mech., page P08010, 2006.

    Google Scholar 

  53. I. Pagonabarraga, E. Trizac, T. P. C. van Noije, and M. H. Ernst. Randomly driven granular fluids: Collisional statistics and short scale structure. Phys. Rev. E, 65(1):011303, 2002.

    Article  Google Scholar 

  54. A. Puglisi, P. Visco, A. Barrat, E. Trizac, and F. van Wijland. Fluctuations of internal energy flow in a vibrated granular gas. Phys. Rev. Lett., 95:110202, 2005.

    Article  Google Scholar 

  55. A. Puglisi, P. Visco, E. Trizac, and F. van Wijland. Dynamics of a tracer granular particle as a non-equilibrium markov process. Phys. Rev. E, 73:021301, 2006.

    Article  MathSciNet  Google Scholar 

  56. P. Visco. Work fluctuations for a Brownian particle between two thermostats. J. Stat. Mech., page P06006, 2006.

    Google Scholar 

  57. T. P. C. van Noije and M. H. Ernst. Velocity distributions in homogeneously cooling and heated granular fluids. Granular Matter, 1(2):57–64, 1998.

    Article  Google Scholar 

  58. T. P. C. van Noije, M. H. Ernst, E. Trizac, and I. Pagonabarraga. Randomly driven granular fluids: Large scale structure. Phys. Rev. E, 59:4326–4341, 1999.

    Article  Google Scholar 

  59. P. Visco, A. Puglisi, A. Barrat, E. Trizac, and F. van Wijland. Injected power and entropy flow in a heated granular gas. Europhys. Lett., 72:55–61, 2005.

    Article  Google Scholar 

  60. P. Visco, A. Puglisi, A. Barrat, E. Trizac, and F. van Wijland. Fluctuations of power injection in randomly driven granular gases. J. Stat. Phys., 125:529–564, 2006.

    Article  MATH  Google Scholar 

  61. P. Visco, A. Puglisi, A. Barrat, F. van Wijland, and E. Trizac. Energy fluctuations in vibrated and driven granular gases. Eur. Phys. J. B, 51:37–387, 2006.

    Article  Google Scholar 

  62. R. van Zon and E. G. D. Cohen. Extension of the fluctuation theorem. Phys. Rev. Lett., 91:110601, 2003.

    Article  Google Scholar 

  63. D. R. M. Williams and F. C. MacKintosh. Driven granular media in one dimension: correlations and equations of state. Phys. Rev. E, 54(1):R9–R12, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barrat, A., Puglisi, A., Trizac, E., Visco, P., van Wijland, F. (2008). Fluctuations in Granular Gases. In: Capriz, G., Mariano, P.M., Giovine, P. (eds) Mathematical Models of Granular Matter. Lecture Notes in Mathematics, vol 1937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78277-3_7

Download citation

Publish with us

Policies and ethics