Skip to main content

Simple Models for the Transmission of Microparasites Between Host Populations Living on Noncoincident Spatial Domains

  • Chapter
Structured Population Models in Biology and Epidemiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1936))

The goal of this chapter is to provide a simple mathematical approach to modeling the transmission of microparasites between two host populations living on distinct spatial domains. We shall consider two prototypical situations (1), a vector borne disease and, (2), an environmentally transmitted disease. In our models direct horizontal criss-cross transmission from infectious individuals of one population to susceptibles of the other one does not occur. Instead parasite transmission takes place either through indirect criss-cross contacts between infective vectors and susceptible individuals and vice-versa in case (1), and through indirect contacts between susceptible hosts and the contaminated part of the environment and vice-versa in case (2). We shall also assume the microparasite is benign in one of the host populations, a reservoir, that is it has no impact on demography and dispersal of individuals. Next we assume it is lethal to the second population. In applications we have in mind the second population is human while the first one is an animal – avian or rodent – population. Simple mathematical deterministic models with spatio-temporal heterogeneities are developed, ranging from basic systems of ODEs for unstructured populations to Reaction-Diffusion models for spatially structured populations to handle heterogeneous environments and populations living in distinct habitats. Besides showing the resulting mathematical problems are well-posed we analyze the existence and stability of endemic states. Under some circumstances, persistence thresholds are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, G., Krenkre, V.M., Yates, T.L., Parmenter, R.R.: Travelling Waves of Infection in the Hantavirus Epidemics. Bull. Math. Biol., 65, 519–534 (2003)

    Article  Google Scholar 

  2. Acuna-Soto, R., Stahle, D.W., Cleaveland, M.K., Therell, M.D.: Megadrougth and Megadeath in 16th Century Mexico. Emerg. Infect. Dis., 8, 360–362 (2002)

    Article  Google Scholar 

  3. Ainseba, B., Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: An Application of Homogenization Techniques to Population Dynamics Models. Commun. Pure Appl. Anal., 1, 19–33 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Allen, L.J.S.: An Introduction to Stochastic Processes with Application to Biology. Prentice Hall, Upper Saddle River, N.J. (2003)

    Google Scholar 

  5. Anderson, R.M., Jackson, H.C., May, R.M., Smith, A.D.M.: Population Dynamics of Foxes Rabies in Europe. Nature, 289, 765–770 (1981)

    Article  Google Scholar 

  6. Anderson, R.M., May, R.M.: Population Biology of Infectious Diseases. Springer, Berlin Heidelberg New York (1982)

    Google Scholar 

  7. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and its Applications, 2nd edition. Hafner Press, New York (1975)

    MATH  Google Scholar 

  8. Bendahmane, M., Langlais, M., Saad, M.: On Some Anisotropic Reaction–Diffusion Systems with L 1-Data Modeling the Propagation of an Epidemic Disease. Nonlinear Anal., Ser. A, Theory Methods, 54, 617–636 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Begon, M., Bennett, M., Bowers, R.G., French, N.P., Hazel, S.M., Turner, J.: A Clarification of Transmission Terms in Host-Microparasite Models; Numbers, Densities and Areas. Epidemiol. Infect., 129, 147–153 (2002)

    Article  Google Scholar 

  10. Berestycki, H., Hamel, F., Roques, L.: Analysis of a Periodically Fragmented Environment Model: I. Influence of Periodic Heterogeneous Environment on Species Persistence. J. Math. Biol., 51, 75–113 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bernoulli, D.: Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir. Mém. Math. Phys. Acad. Roy. Sci. Paris, 1–45 (1760)

    Google Scholar 

  12. Berthier, K., Langlais, M., Auger, P., Pontier, D.: Dynamics of Feline Virus with Two Transmission Modes Within Exponentially Growing Host Populations. Proc. Roy. Soc. Lond., B, 267, 2049–2056 (2000)

    Article  Google Scholar 

  13. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, Berlin Heidelberg New York (2001)

    MATH  Google Scholar 

  14. Busenberg, S., Cooke, K.C.: Vertically Transmitted Diseases, Biomathematics Volume 23. Springer, Berlin Heidelberg New York (1993)

    Google Scholar 

  15. Cantrell, R.S., Cosner C.: Spatial Ecology Via Reaction Equations. Wiley, Chichester (2003)

    Book  Google Scholar 

  16. Capasso, V.: Mathematical Structures of Epidemic Systems. Lecture Notes in Biomathematics Volume 97. Springer, Berlin Heidelberg New York (1993)

    MATH  Google Scholar 

  17. Caswell, H.: Matrix Population Models 2nd edition. Sinauer Associates Inc., Sunderland, Massachusetts (2001)

    Google Scholar 

  18. Cazenave, T., Haraux A.: An Introduction to Semilnear Evolution Equations. Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford (1998)

    Google Scholar 

  19. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse Density Dependence and the Allee Effect. TREE, 14, 405–410 (1999)

    Google Scholar 

  20. Cushing J.: An introduction to Structured Population Dynamics. CBMS–NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia (1998)

    Google Scholar 

  21. Daley, D.J., Gani, J.: Epidemic Modelling: An Introduction. Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  22. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the Definition and the Computation of the Basic Reproduction Ration R 0 in Models for Infectious Diseases in Heterogeneous Population. J. Math. Biol., 28, 365–382 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Diekmann, O., De Jong, M.C.M., De Koeijer, A.A., Reijnders, P.: The Force of Infection in Populations of Varying Size: A Modeling Problem. J. Biol. Syst., 3, 519–529 (1995)

    Article  Google Scholar 

  24. Diekmann, O., Heesterbeck, J.A.P.: Mathematical Epidemiology of Infectious Diseases, Mathematical and Computational Biology. Wiley, Chichester (2000)

    Google Scholar 

  25. Ducrot, A., Langlais, M.: Travelling waves in invasion processes with pathogens. Mathematical Models and Methods in Applied Sciences, 18, 1–15 (2008)

    Article  MathSciNet  Google Scholar 

  26. Edelstein-Keshet, L.: Mathematical Models In Biology. The Random House Birkhäuser Mathematical Series, New York (1988)

    MATH  Google Scholar 

  27. Fitzgibbon, W.E., Langlais, M.: Weakly Coupled Hyperbolic Systems Modeling the Circulation of Infectious Disease in Structured Populations. Math. Biosci., 165, 79–95 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fitzgibbon, W.E., Hollis, S., Morgan, S.: Steady State Solutions for Balanced Reaction Diffusion Systems on Heterogeneous Domains. Differ. Integral Equ., 12, 225–241 (1999)

    MathSciNet  Google Scholar 

  29. Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: A Mathematical Model for the Spread of Feline Leukemia Virus (FeLV) through a Highly Heterogeneous Spatial Domain. SIAM, J. Math. Anal., 33, 570–588 (2001)

    Google Scholar 

  30. Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: A Reaction–Diffusion System Modeling Direct and Indirect Transmission of a Disease. DCDS B 4, 893–910 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: A Reaction Diffusion System on Non-Coincident Domains Modeling the Circulation of a Disease Between Two Host Populations. Differ. Integral Equ., 17, 781–802 (2004)

    MATH  MathSciNet  Google Scholar 

  32. Fitzgibbon, W.E., Langlais, M., Marpeau, F., Morgan, J.J.: Modeling the Circulation of a Disease Between Two Host Populations on Non Coincident Spatial Domains. Biol. Invasions, 7, 863–875 (2005)

    Article  Google Scholar 

  33. Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: A Mathematical Model for Indirectly Transmitted Diseases. Math. Biosci., 206, 233–248 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Fitzgibbon, W.E., Morgan, J.J.: Diffractive Diffusion Systems with Locally Defined Reactions, Evolution Equations. Ed. by Goldstein G. et al., M. Dekker, New York, 177–186 (1994)

    Google Scholar 

  35. Fouchet, D., Marchandeau, S., Langlais M., Pontier, D.: Waning of Maternal Immunity and the Impact of Diseases: The Example of Myxomatosis in Natural Rabbit Population. J. Theor. Biol., 242, 81–89 (2006)

    Article  MathSciNet  Google Scholar 

  36. Fromont, E., Pontier, D., Langlais, M.: Dynamics of a Feline Retrovirus (FeLV) in Hosts Populations with Variable Structure. Proc. Roy. Soc. Lond., B, 265, 1097–1104 (1998)

    Article  Google Scholar 

  37. Hale, J.: Asymptotic Behavior of Dissiptive Systems. Mathematical Surveys and Monographs 25, AMS Providence, RI (1988)

    Google Scholar 

  38. Hale, J.K., Koçak, H.: Dynamics and Bifurcations. Springer, Berlin Heidelberg New York (1991)

    MATH  Google Scholar 

  39. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  40. Hetchcote, H.W.: The Mathematics of Infectious Diseases, SIAM Rev., 42, 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  41. Hilker, F.M., Lewis, M.A., Seno, H., Langlais, M., Malchow, H.: Pathogens Can Slow Down or Reverse Invasion Fronts of their Hosts. Biol. Invasions, 7, 817–832 (2005)

    Article  Google Scholar 

  42. Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Springer, Berlin Heidelberg New York (1974)

    MATH  Google Scholar 

  43. Hoppensteadt, F.C.: Mathematical Theories of Populations: Demographics, Genetics and Epidemics. CBMS, vol 20, SIAM, Philadelphia (1975)

    Google Scholar 

  44. Horton, P.: Global Existence of Solutions to Reaction Diffusion Systems Heterogeneous Domains, Dissertation, Texas A & M University, College Station (1998)

    Google Scholar 

  45. Iannelli, M.: Mathematical theory of Age-Structured Population Dynamics. Applied Mathematics Monographs no. 7, C.N.R. Pisa (1994)

    Google Scholar 

  46. Kermack, W.O., Mac Kendrick, A.G.: Contributions to the mathematical theory of epidemics, part I, Proc. Roy. Soc. Lond., A, 115, 700–721 (1927). Reprinted with parts II and III in Bull. Math. Biol., 53, 33–118 (1991)

    Article  Google Scholar 

  47. Kesavan, S.: Topics in Functional Analysis and Applications, Wiley, New York (1989)

    MATH  Google Scholar 

  48. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translation AMS 23, Providence, RI (1968)

    Google Scholar 

  49. Langlais, M., Phillips, D.: Stabilization of Solutions of Nonlinear Evolution Equations. Nonlinear Anal. T.M.A., 9, 321–333 (1985)

    Article  Google Scholar 

  50. Langlais, M., Latu, G., Roman, J., Silan, P.: Performance Analysis and qualitative Results of an Efficient Parallel Stochastic Simulator for a Marine Host–Parasite system. Concurrency Comput.: pract. exp., 15, 1133–1150 (2003)

    Article  MATH  Google Scholar 

  51. Murray, J.D.: Mathematical Biology I: An introduction, 3rd edition. Springer, Berlin Heidelberg New York (2003)

    Google Scholar 

  52. Naulin, J.M.: A Contribution of Sparse Matrices Tools to Matrix Population Model Analysis. Math. Biosci., 177–178, 25–38 (2002)

    Article  MathSciNet  Google Scholar 

  53. Okubo, A, Levin, S.: Difusion and ecological problems: Modern perspectives, 2nd edn. Springer, New York (2001)

    Google Scholar 

  54. Olsson, G.E., White, N., Ahlm, C., Elgh, F., Verlemyr, A.C., Juto, P.: Demographic Factors Associated with Hantavirus Infection in Bank Voles (Clethrionomys glareolus). Emerg. Infect. Dis., 8, 924–929 (2002)

    Google Scholar 

  55. Rutledge, C.R., Day, J.F., Stark, L.M., Tabachnick, W.J.: West-Nile Virus Infection Rates in Culex nigricalpus (Diptera: Culicidae) do not Reflect Transmission Rates in Florida. J. Med. Entomol., 40, 253–258 (2003)

    Article  Google Scholar 

  56. Sauvage, F., Langlais, M., Yoccoz, N.G., Pontier, D.: Modelling Hantavirus in Cyclic Bank Voles: The Role of Indirect Transmission on Virus Persistence. J. Anim. Ecol., 72, 1–13 (2003)

    Article  Google Scholar 

  57. Sauvage, F., Langlais, M., Yoccoz, N-G., Pontier, D.: Predicting the Emergence of Human Hantavirus Disease Using a Combination of Viral Dynamics and Rodent Demographic Patterns. Epidemiol. Infect., 135, 46–56 (2007)

    Article  Google Scholar 

  58. Schmaljohn, C., Hjelle, B.: Hantaviruses: A Global Disease Problem. Emerg. Infect. Dis., 3, 95–104 (1997)

    Article  Google Scholar 

  59. Schmitz, O.J., Nudds, T.D.: Parasite-Mediated Competition in Deer and Moose: How Strong is the Effect of Meningeal Worm on Moose? Ecol. Appl., 4, 91–103 (1994)

    Article  Google Scholar 

  60. Seftel, Z.: Estimates in L q of Solutions of Elliptic Equations with Discontinuous Coefficients and Satisfying General Boundary Conditions and Conjugacy Conditions. Soviet Math. Doklady, 4, 321–324 (1963)

    MathSciNet  Google Scholar 

  61. Shaman, J., Day, J.F., Stieglitz, M.: Drought-Induced Amplification of Saint Louis Encephalitis Virus, Florida. Emerg. Infect. Dis., 8, 575–580 (2002)

    Google Scholar 

  62. Shigesada, N., Kawasaki. K.: Biological Invasions: Theory and Practice, Oxford University Press, Oxford (1997)

    Google Scholar 

  63. Stewart, H.: Generation of Analytic Semigroups by Strongly Elliptic Operators. Trans. A.M.S., 199, 141–162 (1974)

    Article  MATH  Google Scholar 

  64. Stewart, H.: Spectral Theory of Heterogeneous Diffusion Systems. J. Math. Anal. Appl., 54, 59–78 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  65. Stewart, H.: Generation of Analytic Semigroups by Strongly El liptic Operators Under General Boundary Conditions, Trans. A.M.S., 259, 299–310 (1980)

    Article  MATH  Google Scholar 

  66. Thieme, H.R.: Mathematics in Population Biology. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  67. Tran, A., Gardon, J., Weber, S., Polidori, L.: Mapping Disease Incidence in Suburban Areas Using Remotely Sensed Data. Am. J. Epidemiol, 252, 662–668 (2004)

    Google Scholar 

  68. Tran, A., Deparis, X., Dussart, P., Morvan, J., Rabarison, P., Polidori, L., Gardon, J.: Dengue Spatial and Temporal Patterns, French Guiana, 2001. Emerg. Infect. Dis., 10, 615–621 (2004)

    Google Scholar 

  69. Webb, G.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

  70. Wolf, C., Sauvage, F., Pontier, D., Langlais, M.: A multi-Patch Model with Periodic Demography for a Bank Vole – Hantavirus System with Variable Maturation Rate. Math. Popul. Stud., 13, 153–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  71. Wolf, C.: Modelling and Mathematical Analysis of the Propagation of a Microparasite in a Structured Population in Heterogeneous Environment (in French). Ph.D Thesis, Bordeaux 1 University, Bordeaux (2005)

    Google Scholar 

  72. Yoccoz, N.G., Hansson, L., Ims, R.A.: Geographical Differences in Size, Reproduction and Behaviour of Bankvoles in Relation to Density Variations. Pol J. Ecol., 48, 63–72 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fitzgibbon, W.E., Langlais, M. (2008). Simple Models for the Transmission of Microparasites Between Host Populations Living on Noncoincident Spatial Domains. In: Magal, P., Ruan, S. (eds) Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, vol 1936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78273-5_3

Download citation

Publish with us

Policies and ethics