Skip to main content
Log in

Modeling the Circulation of a Disease Between Two Host Populations on non Coincident Spatial Domains

  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

We derive a reaction–diffusion system modeling the spatial propagation of a disease with kinetics occurring on distinct spatial domains. This corresponds to the actual invasion of a disease from a species living in a given spatial domain toward a second species living in a different spatial domain. We study the global existence of solutions and discuss the long time behavior of solutions. Then we consider a special case, based on a model of brain worm infection from white-tailed deer to moose populations, for which we discuss the invasion success/failure process and disprove a conjecture stated in an earlier work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • NTJ Bailey (1975) The Mathematical Theory of Infectious Diseases and its Applications EditionNumber2 Hafner Press New York 413

    Google Scholar 

  • S Busenberg KC Cooke (1993) Vertically transmitted diseases, Biomathematics Volume 23 Springer Verlag New York 248

    Google Scholar 

  • RS Cantrell C Cosner (2003) Spatial Ecology Via Reaction Equations John Wiley and Sons Chichester, UK 456

    Google Scholar 

  • O Diekmann MCM De Jong AA De Koeijer P Reijnders (1995) ArticleTitleThe force of infection in populations of varying size: a modeling problem Journal of Biological Systems 3 519–529 Occurrence Handle10.1142/S0218339095000484

    Article  Google Scholar 

  • WE Fitzgibbon M Langlais (1997) ArticleTitleDiffusive SEIR models with logistic population control Communications on Applied Nonlinear Analysis 4 1–16

    Google Scholar 

  • WE Fitzgibbon JJ Morgan R Sanders (1992) ArticleTitleGlobal existence and boundedness for a class of inhomogeneous semilinear parabolic equations Nonlinear Analysis TMA 19 885–899 Occurrence Handle10.1016/0362-546X(92)90057-L

    Article  Google Scholar 

  • WE Fitzgibbon C Martin JJ Morgan (1994) ArticleTitleUniform bounds and asymptotic behavior for a diffusive epidemic model with criss-cross dynamics Journal of Mathematical Analysis and Applications 184 399–414 Occurrence Handle10.1006/jmaa.1994.1209

    Article  Google Scholar 

  • WE Fitzgibbon M Langlais ME Parrott GW Webb (1995) ArticleTitleA diffusive system with age dependence modeling FIV Nonlinear Analysis TMA 25 975–989 Occurrence Handle10.1016/0362-546X(95)00092-A

    Article  Google Scholar 

  • WE Fitzgibbon M Parrott GF Webb (1995) ArticleTitleDiffusive epidemic models with criss-cross dynamics Mathematical Biosciences 128 131–155 Occurrence Handle10.1016/0025-5564(94)00070-G Occurrence Handle7606132

    Article  PubMed  Google Scholar 

  • WE Fitzgibbon M Langlais JJ Morgan (1999) ArticleTitleEventually uniform bounds for a quasipositive reaction diffusion system Japan Journal of Industrial and Applied Mathematics 16 225–241

    Google Scholar 

  • WE Fitzgibbon M Langlais JJ Morgan (2001) ArticleTitleA mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous domain SIAM Journal of Mathematical Analysis 33 570–588 Occurrence Handle10.1137/S0036141000371757

    Article  Google Scholar 

  • WE Fitzgibbon M Langlais JJ Morgan (2004) ArticleTitleA reaction-diffusion system modeling direct and indirect transmission of a disease DCDS B 4 893–910

    Google Scholar 

  • WE Fitzgibbon M Langlais JJ Morgan (2004) ArticleTitleA reaction diffusion system on non-coincident domains modeling the circulation of a disease between two host Populations Differential and Integral Equations 17 781–802

    Google Scholar 

  • J Hale (1988) Asymptotic Behavior of Dissipative Systems American Mathematical Society Providence, Rhode Island 198

    Google Scholar 

  • D Henry (1981) Geometric Theory of Semilinear Parabolic Equations Springer-Verlag Berlin 348

    Google Scholar 

  • S Hollis RH Martin M Pierre (1987) ArticleTitleGlobal existence and boundedness in reaction diffusion systems SIAM Journal of Mathematical Analysis 18 744–761

    Google Scholar 

  • OA Ladyzenskaja V Solonnikov N Ural’ceva (1968) Linear and quasilinear equations of parabolic type Translations of AMS 23 Providence, Rhode Island 736

    Google Scholar 

  • JJ Morgan (1989) ArticleTitleGlobal existence for semilinear parabolic systems SIAM Journal of Mathematical Analysis 20 1128–1144 Occurrence Handle10.1137/0520075

    Article  Google Scholar 

  • JJ Morgan (1990) ArticleTitleBoundedness and decay results for reaction diffusion systems SIAM Journal of Mathematical Analysis 21 1172–1184 Occurrence Handle10.1137/0521064

    Article  Google Scholar 

  • GE Olsson N White C Ahlm F Elgh A-C Verlemyr P Juto (2002) ArticleTitleDemographic factors associated with hantavirus infection in bank voles (Clethrionomys glareolus) Emerging Infectious Diseases 8 924–929 Occurrence Handle12194768

    PubMed  Google Scholar 

  • A Pazy (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations Springer Verlag Berlin 279

    Google Scholar 

  • F Sauvage C Penalba P Vuillaume F Boue D Coudrier D Pontier et al. (2002) ArticleTitlePuumala hantavirus infection in humans and in the reservoir host, Ardennes region, France Emerging Infectious Diseases 8 1509–1511 Occurrence Handle12498675

    PubMed  Google Scholar 

  • F Sauvage M Langlais NG Yoccoz D. Pontier (2003) ArticleTitleModelling hantavirus in cyclic bank voles the role of indirect transmission on virus persistence Journal of Animal Ecology 72 1–13 Occurrence Handle10.1046/j.1365-2656.2003.00675.x

    Article  Google Scholar 

  • C Schmaljohn B Hjelle (1997) ArticleTitleHantaviruses: a global disease problem Emerging Infectious Diseases 3 IssueID2 95–104 Occurrence Handle9204290

    PubMed  Google Scholar 

  • OJ Schmitz TD Nudds (1994) ArticleTitleParasite-mediated competition in deer and moose: how strong is the effect of meningeal worm on moose? Ecological Applications 4 91–103

    Google Scholar 

  • G Sell Y You (2002) Dynamics of Evolutionary Systems Springer-Verlag New York 670

    Google Scholar 

  • J Shaman JF Day M Stieglitz (2002) ArticleTitleDrought-induced amplification of Saint Louis encephalitis virus Florida. Emerging Infectious Diseases 8 575–580

    Google Scholar 

  • J Smoller (1983) Shock Waves and Reaction Diffusion Equations Springer Verlag New York 632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Langlais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgibbon, WE., Langlais, M., Marpeau, F. et al. Modeling the Circulation of a Disease Between Two Host Populations on non Coincident Spatial Domains. Biol Invasions 7, 863–875 (2005). https://doi.org/10.1007/s10530-005-5210-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-005-5210-1

Keywords

Navigation