
Applications of Quantum Stochastic
Processes in Quantum Optics

Luc Bouten

Abstract These lecture notes provide an introduction to quantum filtering
and its applications in quantum optics. We start with a brief introduction to
quantum probability, focusing on the spectral theorem. Then we introduce
the conditional expectation and quantum stochastic calculus. In the last part
of the notes we discuss the filtering problem.

1 Quantum Probability

In quantum theory observables are represented by selfadjoint operators on a
Hilbert space. When an observable is being measured, we randomly obtain
a measurement result. That is, the result of the measurement is given by a
random variable on some classical probability space. In this section we will
investigate how we can pass from a selfadjoint operator to a classical random
variable. Along the way we will setup a generalised theory of probability,
called noncommutative or quantum probability, that is rich enough to contain
quantum mechanics.

1.1 The Spectral Theorem

In these notes we take as a part of its definition that a Hilbert space is
separable. The following theorem shows that a self-adjoint operator S on a
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Hilbert space can be identified with a random variable h on a measure space
(Ω,Σ, μ). It is the heart of quantum mechanics.

Theorem 1.1. (Spectral Theorem) Let H be a Hilbert space and let S :
H → H be a bounded selfadjoint operator. Then there exist a measure space
(Ω,Σ, μ), a unitary U : H → L2(Ω,Σ, μ) and a bounded real valued Σ-
measurable function h on Ω such that

S = U∗MhU,

where the multiplication operatorMh : L2(Ω,Σ, μ) → L2(Ω,Σ, μ) is given by

(Mhf)(ω) = h(ω)f(ω),

for all ω ∈ Ω.

Proof. See Reed and Simon volume I [23].

Suppose that the dimension n of H is finite. Since S is self-adjoint, we
can always find an orthonormal basis (e1, . . . , en) such that S is diagonal,
i.e. S = diag(h1, . . . , hn). Note that the real numbers hi and hj are not
necessarily different numbers, some eigenvalues might be degenerate. Let us
define Ω = {1, . . . , n}. Moreover, define h : Ω → R by h(ω) = hω for all
ω ∈ Ω. Let Σ = P(Ω) be the sigma-algebra of all subsets of Ω. We take
for μ simply the counting measure. Define U : H → L2(Ω,Σ, μ) by linear
extension of the map

Ueω = χ{ω}, ω ∈ Ω,
where χ{ω}(ω′) is 1 if ω′ = ω and 0 otherwise. Note that U is unitary and
that S = U∗MhU . That means, we have now proved the spectral theorem
in finite dimension. We now also see that the main idea of the theorem is to
diagonalise an operator. The spectral theorem gives a precize meaning to the
notion of diagonalisation also in the infinite dimensional case.

Let X : R → R be the map given by X(x) = x and let p =
∑l

m=0 αmX
m

be a polynomial. Suppose S is a self-adjoint operator on a Hilbert space
H. The spectral theorem provides a measure space (Ω,Σ, μ), a unitary U :
H → L2(Ω,Σ, μ) and a Σ-measurable real valued function h such that S =
U∗MhU . It is easy to see that

l∑
m=0

αmS
m = U∗Mp◦hU. (1.1)

This shows that we can define the polynomial p evaluated at S, denoted p(S),
in two equivalent ways, i.e. either by the left hand side or the right hand of
Equation (1.1). The spectrum of an operator T : H → H is defined as the set

σ(T ) =
{
λ ∈ C; T − λI does not have a bounded inverse

}
. (1.2)
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In finite dimensions the spectrum of an operator is just the set of its eigen-
values. The spectrum of a bounded operator T is compact. For the operator
S, diagonalised by the spectral theorem as S = U∗MhU , it is not hard to
see that h(ω) ∈ σ(S) for μ-almost all ω ∈ Ω and that σ(S) is the smallest
compact subset of C with this property. We denote the range of h by Ran(h)
and are guided by the idea Ran(h) = σ(S).

Definition 1.2. (Functional calculus) Let S : H → H be a bounded,
self-adjoint operator and let j : σ(S) → C be a bounded Borel measurable
function. The spectral theorem provides a measure space (Ω,Σ, μ), a unitary
U : H → L2(Ω,Σ, μ) and a Σ-measurable real valued function h such that
S = U∗MhU . Define the bounded linear operator j(S) : H → H by

j(S) = U∗Mj◦hU.

For polynomials p it is clear from Equation (1.1) that this definition does
not depend on which ‘diagonalisation’ of S we choose (the spectral theorem
shows existence, not uniqueness of (Ω,Σ, μ), U and h). With polynomials
we can uniformly approximate continuous functions arbitrarily well (σ(S) is
compact) and with continuous functions we can approximate bounded Borel
measurable functions arbitrarily well pointwise. In this way it follows that
the definition of j(S) does not depend on the diagonalisation for all bounded
measurable functions j. See Reed and Simon [23] for further information.

Suppose the bounded self-adjoint operator S represents an observable of
some physical system. Suppose the system is in a state given by a vector v
of unit length in the Hilbert space H. We now discuss some of the basics of
quantum mechanics in this setting. When it is measured, the observable S
can only take values in the spectrum σ(S). Let B be a Borel subset of σ(S).
The set B corresponds to the event ‘S takes a value in B’. The probability
of this event is given by

P
(
S takes a value in B

)
=
〈
v, χB(S)v

〉
,

where χB is the characteristic function of the Borel set B, i.e. χB(s) = 1 if
s ∈ B and zero otherwise. The spectral theorem provides a measure space
(Ω,Σ, μ), a unitary U : H → L2(Ω,Σ, μ) and a Σ-measurable real valued
function h such that S = U∗MhU . By definition χB(S) = U∗MχB◦hU =
U∗Mχh−1(B)

U . Note that since h is measurable, the set h−1(B) is an element
of Σ. In fact, we can assign probabilities to all Q ∈ Σ by

P(Q) =
〈
v, U∗MχQUv

〉
.

Summarizing, we can represent S as a random variable h on the probability
space (Ω,Σ,P). The spectral theorem transforms quantum mechanics to
classical probability theory.

We will now extend the spectral theorem so that we can simultaneously di-
agonalise a whole class of commuting bounded normal operators. An operator
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S : H → H is called normal if it commutes with its adjoint, i.e. SS∗ = S∗S.
Before stating the theorem, we need to introduce some mathematical ob-
jects. Let H be a Hilbert space. Denote by B(H) the algebra of all bounded
operators on H and let S be a subset of B(H). We call the set

S ′ = {
R ∈ B(H); RS = SR ∀S ∈ S},

the commutant of S in B(H). A von Neumann algebra A on H is a
∗-subalgebra of B(H) that equals its double commutant, i.e. A′′ = A. It
is a consequence of von Neumann’s double commutant theorem (see e.g. [17])
that a von Neumann algebra is closed in the weak operator topology. It im-
mediately follows from A′′ = A that the identity I ∈ B(H) is an element of
the von Neumann algebra A. A state is a linear map ρ : A → C such that ρ
is positive in the sense that ρ(S∗S) ≥ 0 for all S ∈ A, and such that ρ is nor-
malised ρ(I) = 1. A state is called normal if it is weak operator continuous
on the unit ball of A.

Theorem 1.3. (Spectral Theorem) Let C be a commutative von Neumann
algebra and let ρ be a normal state on C. There exist a measure space (Ω,Σ, μ)
and a ∗-isomorphism ι from C to L∞(Ω,Σ, μ), the space of all bounded mea-
surable functions on Ω. Furthermore, there exists a probability measure P on
Σ such that

ρ(C) =
∫
Ω

ι(C)(ω)P(dω),

for all C ∈ C.

Theorem 1.3 can be obtained from Theorem 1.1 by using that under mild
conditions (which are fulfilled since our von Neumann algebra acts on a sep-
arable Hilbert space) a commutative von Neumann algebra C is generated by
a single bounded selfadjoint operator S [27].

Given a probability space (Ω,Σ,P), we can study the commutative von
Neumann algebra C := L∞(Ω,Σ,P), acting on the Hilbert space L2(Ω,Σ,P)
by pointwise multiplication equipped with the normal state ρ given by expec-
tation with respect to the measure P. The pair (C, ρ) faithfully encodes the
probability space (Ω,Σ,P) [19]. Indeed, the sigma-algebra Σ can be recon-
structed (up to equivalence of sets with P-null symmetric difference, a point
on which we will not dwell here) as the set of projections in C, i.e. the set of
characteristic functions of sets in Σ, and the probability measure is given by
acting with the state ρ on this set of projections. We conclude that studying
commutative von Neumann algebras equipped with normal states is the same
as studying probability spaces. This motivates the following definition.

Definition 1.4. A non-commutative or quantum probability space is a pair
(A, ρ) where A is a von Neumann algebra on some Hilbert space H and ρ is
a normal state.

Note that we do not require the state ρ to be faithful. We use quantum
probability spaces to model experiments involving quantum mechanics. The
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first thing to do is to set a model, say (A, ρ). It is a feature of quantum
mechanics that in one single realization of an experiment only commuting
observables can be measured. That is, the experiment is determined by a
commutative von Neumann subalgebra C of A. The pair (C, ρ|C) is equiva-
lent to a classical probability model (Ω,Σ,P) via the spectral theorem. The
operators in C are mapped to random variables ι(C) on (Ω,Σ,P) and rep-
resent the stochastic measurement results of the experiment. The pair (A, ρ)
describes the collection of all the experiments (i.e. the collection of commu-
tative subalgebras of A) and their statistics in different realizations of the
experiment in a concise way.

1.2 Unbounded Operators

Up to now we have only considered bounded operators. In general, however,
an observable is given by a selfadjoint, not necessarily bounded, operator
on some dense domain of the Hilbert space H. In these notes we will not
put emphasis on the problems one encounters when dealing with unbounded
operators. When adding or multiplying unbounded operators, it is important
to keep track of the domains involved. In this subsection we discuss some
techniques for relating an unbounded operator to a von Neumann algebra.

Definition 1.5. Let T be a densely defined linear operator on some Hilbert
space H. Denote the domain of T by Dom(T ). The operator T is called
closed if its graph {(x, Tx); x ∈ Dom(T )} is a closed subset of H×H. Define
Dom(T ∗) as the set of x ∈ H for which there is a y ∈ H such that

〈Tz, x〉 = 〈z, y〉, ∀z ∈ Dom(T ).

For each such x ∈ Dom(T ∗), we define T ∗x = y. We call T ∗ the adjoint of T .
The operator T is called symmetric if T ⊂ T ∗, i.e. Dom(T ) ⊂ Dom(T ∗) and
Tz = T ∗z for all z ∈ Dom(T ). Equivalently, T is symmetric if and only if
〈Tz, y〉 = 〈z, T y〉 for all z, y ∈ Dom(T). The operator T is called selfadjoint
if T = T ∗, i.e. if T is symmetric and Dom(T ) = Dom(T ∗).

Theorem 1.6. (basic criterion for selfadjointness) Let T be a symmetric
operator on a Hilbert space H. The following three statements are equivalent

1. T is selfadjoint.
2. T is closed, Ker(T ∗ + iI) = {0} and Ker(T ∗ − iI) = {0}.
3. Ran(T + iI) = H and Ran(T − iI) = H.

The proof of the above theorem can be found in [23]. Theorem 1.6 shows
that T + iI is an injective operator with range H. This means (T + iI)−1

is well-defined with domain H. Moreover, since T + iI is closed, (T + iI)−1 is
also closed. The closed graph theorem (see [23]) then asserts that (T + iI)−1
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is bounded. A similar argument shows that T − iI is invertible and that
(T − iI)−1 is bounded. Let λ be in the complement of the spectrum of T (i.e.
T − λI has a bounded inverse). Define the resolvent of T at λ as Rλ(T ) =
(T − λI)−1 (See also Section 3.2 of the lectures by N. Privault). Note that
we have the following identity

Rλ(T )−Rμ(T ) = Rλ(T )(T − μI)Rμ(T )−Rλ(T )(T − λI)Rμ(T )
= (λ− μ)Rλ(T )Rμ(T ).

Adding this same identity with the roles of μ and λ interchanged shows that
Rλ(T ) and Rμ(T ) commute. Therefore (T + iI)−1 and (T − iI)−1 commute.
The equality〈
(T−iI)x, (T+iI)−1(T+iI)y

〉
=
〈
(T−iI)−1(T−iI)x, (T+iI)y

〉
, x, y ∈ H,

and the fact that Ran(T ± iI) = H shows that (T + iI)−1∗ = (T − iI)−1.
Therefore (T + iI)−1 is normal and therefore the von Neumann algebra gen-
erated by (T + iI)−1 is commutative.

Definition 1.7. Let A be a von Neumann algebra on some Hilbert space
H. Let T be a selfadjoint operator on a dense domain of H. T is said to be
affiliated to A if (T − iI)−1 is an element of A. We denote this as TηA.

Note that T is affiliated to the commutative von Neumann algebra gener-
ated by (T + iI)−1. Suppose that C is a commutative von Neumann algebra
on some Hilbert space H and suppose that T is a selfadjoint operator affili-
ated to C. Let ρ be a normal state on C. The spectral theorem (Theorem 1.3)
provides a measure space (Ω,Σ, μ), a ∗-isomorphism from C → L∞(Ω,Σ, μ)
and a probability measure P on Σ such that ρ(C) = EP(ι(C)) for all C ∈ C.
That is, ι allows us to represent the elements in C as classical random vari-
ables on the probability space (Ω,Σ,P). Since (T + iI)−1 is an element of C
we can now also represent T on (Ω,Σ,P) by

ι(T )(ω) =
1

ι
(
(T + iI)−1

)
(ω)

− i, ω ∈ Ω. (1.3)

Note that ι(T ) is not bounded. Nevertheless, we have succeeded in represent-
ing T as a classical random variable on (Ω,Σ,P).

The following theorem shows there is a one-one correspondence between
strongly continuous one-parameter groups of unitaries and selfadjoint opera-
tors. The theorem is a classic result and can be found e.g. in [17] or [23].

Theorem 1.8. (Stone’s theorem) Let A be a von Neumann algebra on
some Hilbert space H and let {Ut}t∈R ⊂ A be a group of unitaries that is
continuous in the strong operator topology. There exists a unique selfadjoint
operator S affiliated to A such that Ut = exp(itS) for all t ∈ R. The operator
S is called the Stone generator of {Ut}t∈R.
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1.3 Wiener and Poisson Processes

We now introduce the quantum probability space with which we will model
the quantized electromagnetic field. We will see that the model is rich enough
to support an entire family of Wiener and Poisson processes. These differ-
ent processes do not all commute with each other. In this sense quantum
probability is richer than the classical theory.

Definition 1.9. Let H be a Hilbert space. The bosonic or symmetric Fock
space over H is the Hilbert space

F(H) = C ⊕
∞⊕
n=1

H⊗sn,

where ⊗s denotes the symmetric tensor product.

The Fock space F(H) describes a field of bosons. The different levels in the
Fock space correspond to different numbers of photons present in the field.
Note that it is possible to have superpositions between states with different
number of particles. For f ∈ H we define the exponential vector e(f) by

e(f) = 1 ⊕
∞⊕
n=1

1√
n!
f⊗n.

The vector Φ = e(0) = 1 ⊕ 0 ⊕ 0 ⊕ . . . is called the vacuum vector. The set
of all exponential vectors is linearly independent and the linear span of all
exponential vectors D is a dense subset of F(H) (see e.g. [21]). On the dense
domain D we define for all f ∈ H an operator W (f) by

W (f)e(g) = e−〈f,g〉−
1
2 ||f ||2e(f + g), g ∈ H. (1.4)

W (f) is an isometric map D → D. Therefore, W (f) extends uniquely to a
unitary operator on F(H). The extension of W (f) to F(H) is also denoted
by W (f). The operators W (f) are called Weyl operators . It can be shown
(e.g. [21]) that the Weyl operators W (f), f ∈ H generate the algebra W =
B(F(H)) of all bounded operators on F(H). From the definition in (1.4) it
is easy to see that they satisfy the following Weyl relations

1. W (f)∗ =W (−f), f ∈ H,
2. W (f)W (g) = e−iIm〈f,g〉W (f + g), f, g ∈ H.

(1.5)

For a fixed f in H, the family {W (sf)}s∈R forms a one-parameter group
of unitaries. This one-parameter group is in fact continuous with respect to
the strong operator topology [22]. Denote its Stone generator by B(f), i.e.
we haveW (sf) = exp(isB(f)). The operators B(f) are called field operators.
Let H = L2(R+) and fix α ∈ [0, π). It immediately follows from the Weyl
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relations Equation (1.5) that all the operators in the set S = {W (sf); f =
eiαχ[0,t], t ≥ 0, s ∈ R} commute. Here χ[0,t] is the indicator function of the
interval [0, t], i.e. the function that is 1 on [0, t] and 0 elsewhere. Let Cα be
the commutative von Neumann algebra generated by S. Define for all t ≥ 0
the following selfadjoint operators affiliated to Cα

Bα
t := B(eiαχ[0,t]).

Let the vacuum state φ be given by φ = 〈Φ, ·Φ〉. The spectral theorem
(Theorem 1.3) provides a measure space (Ωα, Σα, μα), a ∗-isomorphism
ι : Cα → L∞(Ωα, Σα, μα), and a probability measure Pα on Σα such that
φ(C) = EPα(ι(C)) for all C ∈ Cα. Using the definition in Equation (1.3)
we can represent the operators Bα

t for t ≥ 0 as random variables ι(Bα
t ) on

(Ωα, Σα,Pα). Note that in the above discussion the parameter α was fixed.
The operators Bα

t and Bα′
s for α �= α′ do not commute, i.e. they can not be

represented as random variables on the same classical probability space.
We will now study the process ι(Bα

t ), t ≥ 0 on (Ωα, Σα,Pα). We calculate
the characteristic function of an increment ι(Bα

t ) − ι(Bα
s ) (where t ≥ s)

EPα

(
eik
(
ι(Bα

t )−ι(Bα
s )
))

= EPα

(
ι
(
eik
(
Bα

t −Bα
s

)))
= φ

(
W
(
kχ[s,t]

))
=
〈
Φ, e−

1
2k

2(t−s)e(kχ[s,t])
〉

= e−
1
2k

2(t−s), k ∈ R.

This shows that the increment has a mean zero Gaussian distribution with
variance t − s (see e.g. [28]). Furthermore, a similar calculation shows that
the joint characteristic function of two increments is given by (where t1 ≥
s1 ≥ t2 ≥ s2)

EPα

(
eik1

(
ι(Bα

t1
)−ι(Bα

s1
)
)
+ik2

(
ι(Bα

t2
)−ι(Bα

s2
)
))

= e−
1
2 (k2

1(t1−s1)+k2
2(t2−s2)) =

EPα

(
eik1

(
ι(Bα

t1
)−ι(Bα

s1
)
))

EPα

(
eik2

(
ι(Bα

t2
)−ι(Bα

s2
)
))
, k1, k2 ∈ R.

Since the joint characteristic function is multiplicative, the increments are
independent [28]. That is, the process ι(Bα

t ) has independent mean zero
Gaussian increments with variance the length of the increment. This means
ι(Bα

t ) is a Wiener process. Note that for every α ∈ [0, π) we have now con-
structed a Wiener process on the Fock space. Note that for different values
of α these processes do not commute with each other. The idea to simultane-
ously diagonalise the fields {Bα

t }t≥0 is implicit in some of the earliest work
on quantum field theory. However, Segal [24] in the 1950s was the first to
emphasize the connection with probability theory.

We will now construct a Poisson process on the Fock space. The second
quantization of an element A ∈ B(H) such that ‖A‖ ≤ 1 (i.e. a contraction)
is defined by

Γ (A) = I ⊕
∞⊕
n=1

A⊗n. (1.6)
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For all contractions A,B ∈ B(H) we immediately have Γ (A)Γ (B) = Γ (AB).
This means that if A and B commute, then Γ (A) and Γ (B) also commute.
Let S be a selfadjoint element of B(H). The selfadjoint operator S generates
a one-parameter group Us = exp(isS) of unitaries in B(H). After second
quantization this leads to a one-parameter group Γ (exp(isS)) of unitaries
in W = B(F(H)). Denote the Stone generator of Γ (exp(itS)) by Λ(S), i.e.
Γ (exp(isS)) = exp(isΛ(S)). Note that Λ(S) is affiliated to the commutative
von Neumann algebra generated by {Γ (Us)}s∈R.

Let H=L2(R+). For t≥ 0, let Pt be the projection given by Pt =Mχ[0,t] . Pt
is selfadjoint and therefore generates a one-parameter group U t

s = exp(isPt).
Let C be the commutative algebra generated by all U t

s for s ∈ R, t ≥ 0.
Introduce the shorthand Λt for the Stone generators Λ(Pt). Note that for all
t ≥ 0, Λt is affiliated to C. On the nth layer of the symmetric Fock space
Γ (exp(isPt)) acts as exp(isPt)⊗n. Differentiation with respect to s shows
that on the nth layer of the symmetric Fock space Λt = Pt⊗ In−1 + I ⊗Pt⊗
In−2 + . . . + In−1 ⊗ Pt. This shows that Λt counts how many particles (i.e.
photons) are present in the interval [0, t].

For f ∈ L2(R) we define a coherent vector ψ(f) as the exponential vector
normalised to unit length, i.e.

ψ(f) = e−
1
2 ||f ||2e(f) = W (f)e(0) = W (f)Φ.

We can now define a coherent state on W = B(F(L2(R+))) by ρ(A) =
〈ψ(f), Aψ(f)〉. The spectral theorem (Theorem 1.3) provides a measure space
(Ω,Σ, μ), a ∗-isomorphism ι : C → L∞(Ω,Σ, μ) and a probability measure
P such that EP(ι(C)) = ρ(C) for all C ∈ C. Since the selfadjoint operators
Λt are affiliated with C, we can represent them as random variables ι(Λt) on
(Ω,Σ,P).

For t1 ≥ s1 ≥ t2 ≥ s2 the joint characteristic function of the increments
ι(Λt1) − ι(Λs1) and ι(Λt2) − ι(Λs2) is given by

EP

(
eik1

(
ι(Λt1 )−ι(Λs1)

)
+ik2

(
ι(Λt2 )−ι(Λs2)

))
=〈

ψ(f), Γ
(
eik1

(
Pt1−Ps1

))
Γ
(
eik2

(
Pt2−Ps2

))
ψ(f)

〉
=

e−||f ||
2
〈
e(f), e

(
eik1

(
Pt1−Ps1

)
eik2

(
Pt2−Ps2

)
f
)〉

=

e

〈
f,

(
e

ik1

(
Pt1−Ps1

)
e

ik2

(
Pt2−Ps2

)
−1

)
f

〉
=

e
∫

t1
s1

(eik1−1)|f |2dλ
e
∫

t2
s2

(eik2−1)|f |2dλ
, k1, k2 ∈ R.

This shows that {ι(Λt)}t≥0 is a process with independent increments. More-
over, it shows that ι(Λt)t≥0 is a Poisson process with intensity measure |f |2dλ,
where λ stands for the Lebesgue measure. Since ψ(f) = W (f)Φ, we can also
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work with respect to the vacuum by sandwiching Λt by W (f). We conclude
that in the vacuum the process W (f)∗ΛtW (f) is a Poisson process with in-
tensity measure |f |2dλ.

2 Conditional Expectations

In this section we start with a discussion to illustrate how the classical condi-
tional expectation can be transferred to quantum models using the spectral
theorem. In pushing the classical concept as far as possible, we arrive at a
definition for the quantum conditional expectation. In Section 4 we state the
quantum filtering problem in terms of the newly defined quantum conditional
expectation.

2.1 Towards a Definition

Let B be a von Neumann algebra on a Hilbert space H and let P be a normal
state on B. Let X and Y be two selfadjoint commuting elements of B. Their
expectations are given by P(X) and P(Y ), respectively. In this subsection we
show how to define the conditional expectation P(X |Y ) of X given Y .

Let us first recall the classical definition. Suppose that F andG are random
variables on a probability space (Ω,Σ,P). Let us suppose for convenience
that Ω is a finite set. Since G is a function on a finite set, its range Ran(G)
is also a finite set. The classical conditional expectation EP(F |G) of F given
G is the random variable (i.e. a measurable function from Ω to C) given by

EP(F |G)(ω) =
∑

g∈Ran(G)

EP(Fχ[G=g])
P([G = g])

χ[G=g](ω), ω ∈ Ω, (2.1)

where [G = g] is the set {ω ∈ Ω; G(w) = g} and χ[G=g] is the indicator
function of that set. Note that EP(F |G) is not just Σ-measurable, but even
σ(G)-measurable, where σ(G) is the σ-algebra generated by G. If Ω is not a
finite set, and might even be continuous, this last point is the guiding idea.
The conditional expectation is then defined as the orthogonal projection from
L2(Ω,Σ,P) onto L2(Ω, σ(G),P) (and then extended to L1), see [28].

Instead of a direct definition as in Equation (2.1), or as an orthogonal
projection on an L2-space, we can provide an abstract characterization of
the conditional expectation. Given a σ-subalgebra Σ0 of Σ, we call a Σ0-
measurable random variable EP(F |Σ0) a version of the conditional expecta-
tion of F on Σ0, if for all Σ0-measurable random variables S we have

EP

(
EP(F |Σ0)S

)
= EP(FS). (2.2)
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In geometric terms this is just a characterisation of the projection discussed
above. Therefore, there exists an object that satisfies this definition, see [28].
It is easy to see that the direct definition in Equation (2.1) satisfies the ab-
stract characterisation of Equation (2.2) if we take Σ0 = σ(G). Furthermore,
there is almost surely only one EP(F |Σ0) satisfying (2.2) (hence the termi-
nology “. . . a version of the. . . ”). The proof of this statement is the same as
that for the quantum case, which we will give below. Starting from the defin-
ition of the classical conditional expectation EP(F |Σ0) in Equation (2.2) we
can prove that it has the following properties see e.g. [28]. It is linear in F , it
maps positive random variables to positive random variables, it preserves χΩ ,
it has the module property EP(FS|Σ0) = EP(F |Σ0)S for all Σ0-measurable
functions S, it satisfies the tower property EP(EP(F |Σ1)|Σ0) = EP(F |Σ0)
whenever Σ0 ⊂ Σ1, and it is the least mean square estimate of F (see also
further below).

Let us return to the commuting selfadjoint operators X and Y in the von
Neumann algebra B equipped with the normal state P. The operators X
and Y together generate a commutative von Neumann subalgebra X of B.
The spectral theorem provides a measure space (Ω,Σ, μ), a ∗-isomorphism ι
from X to L∞(Ω,Σ, μ) and a probability measure P on Σ such that P(C) =
EP(ι(C)) for all C ∈ X . We know how to condition ι(X) on ι(Y ), that can be
done with the classical conditional expectation EP(ι(X)|ι(Y )). It is natural
to define the quantum conditional expectation as

P(X |Y ) = ι−1
(

EP

(
ι(X)

∣∣ι(Y )
))
.

We now see that we can only condition those observables X ∈ B that com-
mute with Y . That, however, is exactly as it should be. In one realization
of an experiment we can only access commuting observables. Two noncom-
muting observables can never both be assigned a numerical value in a single
realization of the experiment, i.e. there is no need for conditioning them
on each other. This idea has been called the nondemolition principle. Note,
however, that two operators X1 and X2 that both commute with Y need not
necessarily commute with each other.

It is now straightforward to define the conditional expectation of a self-
adjoint operator X on a commutative subalgebra C of B with which X com-
mutes, i.e. XC = CX for all C ∈ C. In short, let X be the commutative
algebra generated by the whole of C and X together. Apply the spectral
theorem to (X ,P), that enables the definition of a ι, and then define

P(X |C) := ι−1

(
EP

(
ι(X)

∣∣∣σ(ι(C); C ∈ C))). (2.3)

In the next subsection we start with the formal definition of the quantum
conditional expectation.
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2.2 The Quantum Conditional Expectation

Definition 2.1. (Quantum conditional expectation) Let (B,P) be a
quantum probability space. Let C be a commutative von Neumann subalge-
bra of B. Denote by A its relative commutant, i.e. A = C′ := {A ∈ B; AC =
CA, ∀C ∈ C}. Then P(·|C) : A → C is (a version of) the conditional expec-
tation from A onto C if

P
(
P(A|C)C

)
= P(AC), ∀A ∈ A, ∀C ∈ C. (2.4)

Note that the conditional expectation P( · |C) is defined only on the com-
mutant A of C! The definition that we gave here is more restrictive than the
one that is usual in quantum probability (see e.g. [26]). There, one also allows
for the conditioning on noncommutative subalgebras.

In applications, we start with the quantum probability space (B ⊗W ,P).
Here B is the algebra with which we model some system of interest (two-level
atom, a gas of atoms etc.), W = B(F(L2(R))) is the algebra with which we
model the electromagnetic field and P = ρ ⊗ φ, where ρ some normal state
on B and φ is the vacuum state on the field. A commutative subalgebra C
is then generated by the observations we perform (see further below). Next,
we choose A to be the relative commutant of C. The algebra A consists
of the observables that have not been demolished by our observations, i.e.
it consists of all operators that are still compatible with C. The following
lemma establishes existence and uniqueness for the conditional expectation
of Definition 2.1.

Lemma 2.2. The conditional expectation of Definition 2.1 exists and is
unique with probability one, i.e. any two versions P and Q of P(A|C) sat-
isfy ‖P −Q‖P = 0, where ‖X‖2

P
:= P(X∗X).

Proof. Existence. For a self-adjoint element A ∈ A we can define P(A|C) via
Equation (2.3). We now need to check that it satisfies the abstract char-
acterisation Equation (2.4). That, however, follows easily from the classical
couterpart Equation (2.2). If A ∈ A is not self-adjoint, then we write it as
the sum of two self-adjoint elements

A =
(A+A∗) − i(i(A−A∗))

2
,

and simply extend P( · |C) linearly. It is easy to see that that obeys
Equation (2.4).

Uniqueness w.p. one. Define the pre-inner product 〈X,Y 〉 := P(X∗Y ) onA
(it might have nontrivial kernel if P is not faithful.) Then 〈C,A− P(A|C)〉 =
P(C∗A) − P(C∗P(A|C)) = 0 for all C ∈ C and A ∈ A, i.e. A − P(A|C) is
orthogonal to C. Now let P and Q be two versions of P(A|C). It follows that
〈C,P−Q〉 = 0 for all C ∈ C. But P−Q ∈ C, so 〈P−Q,P−Q〉 = ‖P−Q‖2

P
= 0.
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The next lemma asserts that, as in the classical case, the conditional ex-
pectation is the least mean square estimate.

Lemma 2.3. P(A|C) is the least mean square estimate of A given C, i.e.

‖A− P(A|C)‖P ≤ ‖A−K‖P, ∀K ∈ C.

Proof. For all K ∈ C we have

‖A−K‖2
P =

∥∥A− P(A|C) + P(A|C) −K∥∥2

P

=
∥∥A− P(A|C)

∥∥2

P
+
∥∥P(A|C) −K∥∥2

P
≥ ∥∥A− P(A|C)

∥∥2

P
,

where, in the next to last step, we used that A − P(A|C) is orthogonal to
P(A|C)−K ∈ C.

Remark. We have now highlighted the existence, uniqueness with prob-
ability one, and the mean least squares property of the quantum conditional
expectation. The other elementary properties of classical conditional expec-
tations and their proofs [28] carry over directly to the noncommutative set-
ting. In particular, we have linearity, positivity, preservation of the identity,
the tower property P(P(A|B)|C) = P(A|C) if C ⊂ B, the module property
P(AB|C) = P(A|C)B for B ∈ C, etc. As an example, let us prove linear-
ity. It suffices to show that Z = αP(A|C) + βP(B|C) satisfies the definition
of P(αA + βB|C), i.e. P(ZC) = P((αA + βB)C) for all C ∈ C. But this is
immediate from the linearity of P and Definition 2.1.

In Section 4 we will need to relate conditional expectations with respect
to different states to each other. This is done by the following Bayes-type
formula.

Lemma 2.4. (Bayes formula [8] [7]) Let (B,P) be a noncommutative prob-
ability space. Let C be a commutative von Neumann subalgebra of B and let
A be its relative commutant, i.e. A = C ′ := {A ∈ B; AC = CA, ∀C ∈ C}.
Furthermore, let Q be an element in A such that Q∗Q is invertible and
P(Q∗Q) = 1. We can define a state on A by Q(A) := P(Q∗AQ) and we
have

Q
(
X
∣∣C) =

P
(
Q∗XQ

∣∣C)
P
(
Q∗Q

∣∣C) , X ∈ A.

Proof. Let K be an element of C. For all X ∈ A, we can write

P

(
P
(
Q∗XQ|C)K) = P

(
Q∗XKQ

)
= Q

(
XK

)
= Q

(
Q
(
X |C)K) =

P

(
Q∗QQ

(
X |C)K) = P

(
P

(
Q∗QQ

(
X |C)K∣∣∣C)) =

P

(
P
(
Q∗Q

∣∣C)Q(X |C)K).
Note that the invertibility of P

(
Q∗Q

∣∣C) follows immediately from the invert-
ibility of Q∗Q.
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3 Quantum Stochastic Calculus

We have seen in Section 1.3 that the quantum probability space (W , φ) con-
tains a rich variety of Wiener and Poisson processes. We will now introduce
stochastic integrals with respect to these processes and study their stochastic
calculus. Quantum stochastic calculus has been introduced by Hudson and
Parthasarathy [16]. Quantum stochastic differential equations describe the in-
teraction between atoms and the electromagnetic field in the weak coupling
limit.

3.1 The Stochastic Integral

Lemma 3.1. Let H1 and H2 be Hilbert spaces. There exists a unique unitary
isomorphism U : F(H1 ⊕H2) → F(H1) ⊗F(H2) such that

Ue(x⊕ y) = e(x) ⊗ e(y), x ∈ H1, y ∈ H2. (3.1)

Proof. By linear extension of the relation in Equation (3.1) we get a sur-
jective map from D = span{e(x); x ∈ H1 ⊕ H2} to D1 ⊗ D2 where
Di = span{e(x); x ∈ Hi}. Note that D is dense in F(H1 ⊕H2) and D1 ⊗D2

is dense in F(H1)⊗F(H2). Moreover, for all x1, y1 ∈ H1 and x2, y2 ∈ H2 we
have 〈

e(x1 ⊕ x2), e(y1 ⊕ y2)
〉

= e〈x1+x2,y1+y2〉 = e〈x1,y1〉e〈x2,y2〉

=
〈
e(x1), e(y1)

〉〈
e(x2), e(y2)

〉
,

i.e. U : D → D1⊗D2 is isometric and therefore extends uniquely to a unitary.

We will often identify F(H1⊕H2) and F(H1)⊗F(H2) using the unitary of
Lemma 3.1. For all t ≥ s ≥ 0 we define F = F(L2(R+)), Ft] = F(L2([0, t])),
F[s,t] = F(L2([s, t])) and F[t = F(L2([t,∞)). For tn > ... > t1 > 0 we have
L2(R+) = L2([0, t1])⊕L2([t1, t2])⊕ . . .⊕L2([tn,∞)). Therefore, in the sense
of Lemma 3.1, we get

F = Ft1] ⊗F[t1,t2] ⊗ . . .⊗F[tn−1,tn] ⊗F[tn .

Every partition leads to a tensor product splitting of the symmetric Fock
space. In this sense the symmetric Fock space is a continuous tensor product.
Let H1 and H2 be Hilbert spaces. Denote H = H1 ⊕ H2. It easily follows
from the definition Equation (1.4) that

W (x1 ⊕ x2) = W (x1)⊗W (x2), x1 ∈ H1, x2 ∈ H2. (3.2)
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This means that the algebra generated by the Weyl operators also splits as
a continuous tensor product, i.e. for tn > ... > t1 > 0 we have

W = Wt1] ⊗W[t1,t2] ⊗ . . .⊗W[tn−1,tn] ⊗W[t,

where W = B(L2([0,∞))), Wt] = B(L2([0, t])), W[s,t] = B(L2([s, t])) and
W[t = B(L2([t,∞))). Furthermore, from the definition in Equation (1.6) it
follows that

Γ (S1 ⊕ S2) = Γ (S1)⊗ Γ (S2) (3.3)

for all contractions S1 ∈ B(H1) and S2 ∈ B(H2).

Definition 3.2. On the dense domain D = span{e(f); f ∈ L2(R+)} we
introduce annihilation At and creation At operators by

At =
1
2

(
B(iχ[0,t])− iB(χ[0,t])

)
, A∗t =

1
2

(
B(iχ[0,t]) + iB(χ[0,t])

)
,

where B(f) denotes the Stone generator ofW (tf). The restriction of Λt to D
is also denoted by Λt and is called the gauge process. The operators At, A

∗
t

and Λt are called the fundamental noises.

It can be shown e.g. [21] that the domain of the Stone generatorsB(f), f ∈
L2(R+) contains D, that Ate(f) = 〈χ[0,t], f〉e(f) and that A∗t is the ad-
joint of At restricted to D. Moreover, from its definition it follows that
〈e(f), Λte(f)〉 = 〈g, χ[0,t]f〉〈e(g), e(f)〉. In particular this means that AtΦ =
Ate(0) = 0 and ΛtΦ = 0, properties that we will exploit later on. Let Mt

be one of the fundamental noises. It is a consequence of Equations (3.2) and
(3.3) and the definition of the fundamental noises as (linear combinations of)
generators of one-parameter groups that

(Mt −Ms)e(f) = e(fs]) ⊗
(
(Mt −Ms)e(f[s,t])

)
⊗ e(f[t), (3.4)

where f ∈ L2(R+), fs] = χ[0,s]f , f[s,t] = χ[0,t]f , f[t = χ[t,∞)f and (Mt −
Ms)e(f[s,t]) ∈ F[s,t]. In the following we will for notational convenience often
omit the tensor product signs between exponential vectors. Let H be a Hilbert
space, called the initial space. We tensor the initial space to F and extend
the operators At, A∗t and Λt to H ⊗ F by ampliation, i.e. by tensoring the
identity to them on H (however, to keep notation light we will not denote
it). We denote the algebra of all bounded operators on H by B.

Definition 3.3. (Simple quantum stochastic integral) Let {Ls}0≤s≤t
be an adapted (i.e. Ls ∈ B ⊗ Ws] for all 0 ≤ s ≤ t) simple process with
respect to the partition {s0 = 0, s1, . . . , sp = t} in the sense that Ls = Lsj

whenever sj ≤ s < sj+1. The stochastic integral of L with respect to a
fundamental noise M on H⊗D is then defined as [16, 21]
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0

LsdMs xe(f) :=
p−1∑
j=0

(
Lsjxe(fsj ])

)(
(Msj+1 −Msj )e(f[sj ,sj+1])

)
e(f[sj+1),

for all x ∈ H and f ∈ L2(R+).

Let {Ls}0≤s≤t be an adapted process, i.e. Ls ∈ B ⊗Ws] for all 0 ≤ s ≤ t.
We would like to define the integral

It =
∫ t

0

LsdMs,

as a limit of simple integrals Int =
∫ t

0
LnsdMs where Ln is an approximation of

L by simple adapted processes. In the classical case we use the Itô isometry
to define the stochastic integral as a mean square limit of simple processes.
Moreover, one can show that each mean square integrable process can be
approximated by simple processes. Let us see how far we would get using
this procedure in the quantum case. For simplicity suppose that the initial
space is trivial H = C. Suppose that we are working with respect to the
vacuum state φ on W . Following the classical reasoning, we are looking for
an operator It such that 〈(It− Int )Φ, (It− Int )Φ〉 → 0 as n→∞ where Int are
simple integrals corresponding to simple approximations of L. This however,
would only fix the action of It on the vacuum vector Φ. It remains unclear
what the domain of It is and what the action of It is on the vectors in that
domain that are not the vacuum.

The solution to this problem was given by Hudson and Parthasarathy [16].
They simply fix the domain for a stochastic integral It to H⊗D (one could
choose a dense domain in H, for simplicity we have chosen H). Moreover, they
consider Int to be an approximation of It if 〈(It−Int )x⊗ψ, (It−Int )x⊗ψ〉 → 0
as n → ∞ for all x ∈ H and ψ ∈ D. This limit exists if

∫ t

0 ||Ls − Lns ||ds →
0 as n → ∞ for all x ∈ H, ψ ∈ D and the limit is independent of the
approximation [16]. Moreover, every adapted square integrable process L, i.e.∫ t

0
||Lsx ⊗ ψ||2ds < ∞ for all x ∈ H, ψ ∈ D admits a simple approximation

[16]. This means that for every adapted square integrable Ls we now have an
unambiguous definition of the stochastic integral

∫ t

0 LsdMs, where Ms can
be any of the three fundamental noises. Adapted square integrable processes
are said to be stochastically integrable. We use the following shorthand for
stochastic integrals dXt = LtdMt means Xt = X0 +

∫ t

0 LsdMs.
Since AtΦ = ΛtΦ = 0 it is immediate from the definition that quantum

stochastic integrals with respect to At and Λt acting on Φ are zero, or in-
finitesimally dΛtΦ[t = dAtΦ[t = 0. From this we can immediately conclude
that vacuum expectations of stochastic integrals with respect to At and Λt
vanish. Furthermore, we have

〈
Φ,
∫ t

0 LsdA
∗
sΦ
〉

=
〈 ∫ t

0 L
∗
sdAsΦ,Φ

〉
= 0, i.e.

vacuum expectation of stochastic integrals with respect to A∗t are zero as
well. Note, however, that dA∗tΦ[t �= 0.



Applications of Quantum Stochastic Processes in Quantum Optics 293

To get some more feeling for the definition of the quantum stochastic in-
tegral we will now investigate which quantum stochastic differential equation
is satisfied by the Weyl operators W (ft]) (f ∈ L2(R+)). Note that the sto-
chastic integrals are defined on the domain D. Therefore we calculate for g
and h in L2(R+)

φ(t) :=
〈
e(g),W (ft])e(h)

〉
= e−〈ft],h〉− 1

2 ||ft]||2〈e(g), e(h+ ft])
〉

= e〈g,ft]〉−〈ft],h〉− 1
2 ||ft]||2e〈g,h〉,

which means that

φ(t) − φ(0) =
∫ t

0

〈
e(g),

d

ds

(
〈g, fs]〉 − 〈fs], h〉 − 1

2
||fs]||2

)
φ(s)e(h)

〉
ds.

Let us turn to the definition of the stochastic integral, Definition 3.3. Let
{0 = s0, s1, . . . , sp = t} be a partition of [0, t] and choose Ls = f(sj)W (fsj ])
for sj ≤ s < sj+1. Let further Mt be At, then the definition of the stochastic
integral gives (heuristically in the last step)

p−1∑
j=0

(
f(sj)W (fsj ])e(hsj ])

)(
(Asj+1 −Asj )e(h[sj ,sj+1])

)
e(h[sj+1) =

p−1∑
j=0

〈
f(sj)χ[sj ,sj+1], h

〉
W (fsj ])e(h) =

p−1∑
j=0

(〈
f(sj)χsj+1], h

〉− 〈
f(sj)χsj ], h

〉)
W (fsj ])e(h)

−→
∫ t

0

d
〈
fs], h

〉
W (fs]) e(h).

Together with a similar calculation for Mt = A∗t , this yields the following
quantum stochastic differential equation for the Weyl operator W (ft])

dW (ft]) =
{
f(t)dA∗t − f(t)dAt − 1

2

∣∣f(t)∣∣2dt}W (ft]). (3.5)

3.2 The Calculus

We now turn to the calculus satisfied by the quantum stochastic integrals we
defined in the previous subsection. It is the calculus that makes the theory
useful, it allows us to forget the tedious definition of the integral in compu-
tations and instead to perform algebraic manipulations with increments.
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Definition 3.4. A pair (L,L†) of adapted processes defined on H ⊗ D is
called an adjoint pair if〈
x⊗e(f), Lty⊗e(f)

〉
=
〈
L†tx⊗e(f), y⊗e(f)

〉
, x, y ∈ H, f, g ∈ L2(R+), t ≥ 0.

The dagger replaces the adjoint on the domain H ⊗ D. It is easy to see
that (A,A∗) and (Λ,Λ) are adjoint pairs. Moreover, if (L,L†) is an adjoint
pair, then (X,X†) is an adjoint pair, where dXt = LdMt and dX†t = L†dM †

t .

Theorem 3.5. (Quantum Itô rule [16]) Let (B,B†), (C,C†), (D,D†),
(E,E†) be adjoint pairs of stochastically integrable processes. Let Ft, Gt, Ht

and It be stochastically integrable processes. Let Xt and Yt be stochastic in-
tegrals of the form

dXt = BtdΛt + CtdAt +DtdA
∗
t + Etdt,

dYt = FtdΛt +GtdAt +HtdA
∗
t + Itdt,

Suppose XtYt is an adapted process defined on H⊗D and XF,XG,XH,XI,
BY,CY,DY,EY,BF , CF,BH and CH are stochastically integrable, then

d(XtYt) = Xt dYt + (dXt)Yt + dXt dYt,

where dXtdYt should be evaluated according to the quantum Itô table

dAt dΛt dA∗
t dt

dAt 0 dAt dt 0
dΛt 0 dΛt dA∗

t 0
dA∗

t 0 0 0 0
dt 0 0 0 0

i.e. dXtdYt = BtFtdΛt + CtFtdAt +BtHtdA
∗
t + CtHtdt.

Suppose that the product XtYt is an adapted process defined on H ⊗
D. Then we can read off an expression for XtYt from the matrix elements〈
X†t x⊗e(f), Yty⊗e(g)

〉
, which explains the need for the concept of an adjoint

pair. Writing out these matrix elements using the definition of the stochastic
integral is the basic ingredient of the proof of the quantum Itô rule, see [16]
and [21]. To get some more feeling for the proof of the quantum Itô rule we
compute for x, y ∈ H and f, g ∈ L2(R+)〈
xe(f), AtA

∗
t ye(g)

〉
=
〈
xe(f),

(
A∗tAt + [At, A

∗
t ]
)
ye(g)

〉
=〈

Atxe(f), Atye(g)
〉
+ t

〈
xe(f), ye(g)

〉
=
(〈
f, χ[0,t]

〉〈
χ[0,t], g

〉
+ t

)〈
xe(f), ye(g)

〉
.

Infinitesimally that reads d(AtA
∗
t ) = AtdA

∗
t +A∗tdAt + dt. Note that the Itô

correction term finds its origins in the commutator between At and A∗t .
Note that we need to check many conditions before we are allowed to

apply the quantum Itô rule. In practice though we mostly work with ‘noisy
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Schrödinger equations’, which have unitary and therefore bounded solutions.
If the integrals and coefficients are bounded, then all the requirements of the
theorem are satisfied. In the remainder of these notes we will not worry much
about these issues and just assume that we can apply the quantum Itô rule.

In Section 1 we encountered the classical Wiener processesBα
t = ie−iαAt−

ieiαA∗t for α ∈ [0, π). Since dBα
t = ie−iαdAt−ieiαdA∗t , we recover the classical

Itô rule for these Wiener processes, i.e. (dBα
t )2 = dt, from the quantum Itô

rule. For an f ∈ L2(R+) we can write the Weyl operator W (ft]) as W (ft]) =
exp

( ∫ t

0
f(s)d(A∗s−As)

)
. Therefore it follows from the quantum Itô rule that

the Weyl operators W (ft]) satisfy equation (3.5), where − 1
2 ||f ||2W (ft])dt is

the Itô correction term. The Poisson process of the previous section was given
by Λft :=W (f)∗ΛtW (f) in the vacuum state, for which the quantum Itô rule
gives

dΛft = dΛt + f(t)dAt + f(t)dA∗t + |f(t)|2dt,
which leads to the classical Itô rule (dΛft )2 = dΛft for the Poisson process.
Furthermore, integrating the above equation, we see that Λft = Λt+B(ift])+∫ t

0 |f(s)|2ds.

3.3 Open Quantum Systems

In quantum optics the basic model consists of some physical system of in-
terest, e.g. a two-level atom, a cloud of atoms, or an atom in a cavity, in
interaction with the electromagnetic field. The interaction between the elec-
tromagnetic field and the system of interest is described by quantum elec-
trodynamics, see e.g. [10]. The dynamics is given by a Schrödinger equation
in which the atomic dipole operator couples to a stationary Gaussian wide
band noise. The next step is to approximate the wide band noise by white
noise. See [1], [14] and [11] for rigorous limits implementing this Markovian
approximation. In this procedure the Schrödinger equation given by quantum
electrodynamics transforms to a quantum stochastic differential equation of
the form

dUt =
{

(S − I)dΛt + LdA∗t − L∗SdAt − 1
2
L∗Ldt− iHdt

}
Ut, U0 = I,

(3.6)

where S,L and H are operators on the system of interest, H being selfadjoint
and S being unitary. See [14] for a description of how gauge terms can arise
from QED Hamiltonians in a Markovian approximation. For simplicity we
have considered only one channel in the field. In the examples below we will
briefly describe systems that interact with two field channels.

A Picard iteration scheme shows that there exists a unique solution to
Equation (3.6). Using the quantum Itô rule we can calculate dU∗t Ut =
dUtU

∗
t = 0, i.e. the solution to Equation (3.6) is unitary. We define the
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time evolution of observables of the system of interest by the flow jt(X) =
U∗t (X ⊗ I)Ut. Using the quantum Itô rule, we find

djt(X) = jt
(L(X)

)
dt+jt

(
S∗XS−X)dΛt+jt([L∗, XS]

)
dAt+jt

(
[S∗X,L]

)
dA∗t,

where the Lindblad generator [18] is given by

L(X) = i[H,X ] + L∗XL− 1
2
(L∗LX −XL∗L).

Instead of going through a rigorous Markov limit, we will always take the
quantum stochastic differential equation (3.6) as our starting point.

Example 3.6. Suppose we are studying a two-level atom in interaction with
the electromagnetic field. The two-level atom is described by the quantum
probability space (M2(C), ρ) and the field is described by (W , φ). The oper-
ators S,L and H are given by

S = I, L = γσ− =
(

0 0
γ 0

)
, H =

�ω0

2
σz =

(
�ω0
2 0
0 −�ω0

2

)
,

where � is Planck’s constant, γ ≥ 0 is a decay parameter, and ω0 ∈ R is
the so-called atomic frequency, determined by the fact that �ω0 is the energy
difference between the two levels. That is, the interaction between the two-
level atom and the electromagnetic field is given by the following quantum
stochastic differential equation (σ+ = σ∗−)

dUt =
{
γσ−dA∗t − γσ+dAt − γ2

2
σ+σ−dt− i�ω0

2
σzdt

}
Ut, U0 = I.

A laser driving the two-level atom could be modelled by an additional Hamil-
tonian Ωσx = Ω(σ−+σ+), with Ω ∈ R. A more realistic model is obtained by
adding an extra field channel in a coherent state (the laser). If we distinguish
two field channels, then the two-level atom and the field together are de-
scribed by the quantum probability space (M2(C)⊗W1⊗W2, ρ⊗φ⊗σ) where
σ is the state given by the inner product with the vector ψ(f) = W (f)e(0),
for some f ∈ L2(R+). Here |f | is the amplitude of the laser and the phase of f
represents the phase of the driving laser. The quantum stochastic differential
equation is given by

dUt =
{
γ1σ−dA∗1t − γ1σ+dA1t + γ2σ−dA∗2t − γ2σ+dA2t −
γ2
1 + γ2

2

2
σ+σ−dt− i�ω0

2
σzdt

}
Ut, U0 = I,

with γ1, γ2 ≥ 0. If we are only interested in the evolution of adapted
observables, then we have W (f)∗U∗t XUtW (f) = W (ft])∗U∗t XUtW (ft]).
Therefore we can describe the system by the quantum probability space
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(M2(C) ⊗ W1 ⊗ W2, ρ ⊗ φ ⊗ φ), and interaction given by Ũt = UtW (ft]).
Using the quantum Itô rule it is easy to see that

dŨt =
{
γ1σ−dA∗1t − γ1σ+dA1t + LdA∗2t − L∗dA2t −
γ2
1σ+σ− + L∗L

2
dt− i�

2
σz − iHdt

}
Ũt, Ũ0 = I,

with L = γ2σ− + f(t) and H = i(γ2f(t)σ+ − γ2f(t)σ−)/2. The Hamiltonian
H reduces to the simpler form Ωσx if Ω = iγ2f(t)/2 and f(t) = −i.
Example 3.7. We consider a two-level atom inside a cavity. The cavity has
one leaky mirror which couples it to the outside field. The cavity is described
by the Hilbert space �2(N). Let n ∈ N. Denote by δn the element of �2(N)
given by δn(n) = 1 and δn(m) = 0 for all m ∈ N\{n}. The annihilation
operator is given by bδn =

√
nδn−1, n ∈ N∗ and bδ0 = 0 (we will not worry

about defining a domain for b). The creation operator b∗ is the adjoint of b.
The two-level atom in the cavity coupled to the field can be described by the
quantum probability space (M2(C) ⊗ B(�2(N)) ⊗W , ρ ⊗ σ ⊗ φ), where ρ is
some state of the two-level atom, σ is some state on B(�2(N)) (the cavity)
and φ is the vacuum state of the field. The quantum stochastic differential
equation describing the two-level atom, the cavity, and the field together is

dUt =
{
γbdA∗t − γb∗dAt − γ2

2
b∗bdt+ g(σ+b− σ−b∗)dt −

i(Δaσz +Δcb
∗b)dt

}
Ut, U0 = I.

Here γ and g are positive parameters, determined by the cavity. The parame-
ters Δa and Δc are real. More information about cavity QED can be found
in [10]. See [13] for rigorous results on systems including a cavity.

Example 3.8. We consider a gas of atoms in free space in interaction with a
linearly polarized laser beam [25]. Suppose the atoms are all two-level atoms,
i.e. the Hilbert space of the gas is given by H := C2N

. Here N represents the
number of atoms in the gas. The gas is described by the quantum probabil-
ity space (B(H), ρ), where ρ is a state on the algebra B(H) of all bounded
operators on H. We model the laser beam by the symmetric Fock space over
the one photon space C2 ⊗ L2(R+). Here C2 describes the polarization and
L2(R+) describes the spatial degree of freedom of a photon in the beam.
Since the speed of light is constant, we can identify the spatial degree of
freedom with time. Let {ex, ey} be the orthonormal basis in C2 such that ex
corresponds to an x-polarized photon and ey to a y-polarized photon. We can
identify C2 ⊗ L2(R+) with L2(R+) ⊕ L2(R+) by the linear map that maps
ex ⊗ f to (f, 0) and ey ⊗ g to (0, g) for all f, g ∈ L2(R+). That is, the laser
beam consists out of two polarization channels

F(C2 ⊗ L2(R+)) = Fx ⊗Fy.
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Let Wx and Wy be the algebras of all bounded operators on Fx and Fy,
respectively. The gas and the x-polarized laser beam together are modelled
by the quantum probability space

(B(H)⊗Wx⊗Wy, ρ⊗σ
)

where σ is given
by the inner product with the coherent vector ψ(ex ⊗ f) in F(C2 ⊗L2(R+))
given by

ψ(ex ⊗ f) = exp
(
−1

2
‖f‖2

)
1 ⊕

∞⊕
n=1

(ex ⊗ f)⊗n√
n!

.

The modulus and phase of f(t) correspond to the amplitude and phase of
the laser at time t.

We can also choose the circularly polarized basis {e+, e−} in C2, given by
e+ = −(ex + iey)/

√
2 and e− = (ex − iey)/

√
2. In an analogous way as for

the linear basis {ex, ey} this leads to an identification

F(C2 ⊗ L2(R+)) = F+ ⊗F−.

In a suitable appproximation [25], the interaction between the laser beam
and the gas of atoms can be described by the following quantum stochastic
differential equation [5]

dUt =
{(
eiκFz − I)dΛ++

t +
(
e−iκFz − I)dΛ−−t }

Ut, U0 = I. (3.7)

Here κ is a real coupling parameter. The processes Λ++
t and Λ−−t are the

gauge processes on F+ and F−, respectively. The operator Fz : C2N → C2N

is the collective z-component of the spin of the atoms

Fz =
N∑
i=1

I⊗i−1
2 ⊗ σz ⊗ I⊗N−i2 .

Equation (3.7) shows that right polarized photons rotate the spin over a
positive angle κ along the z-axis and left polarized photons rotate the spin
over a negative angle κ along the z-axis.

4 Quantum Filtering

In this section we formulate the filtering problem and solve it by a change
of measure technique that is inspired by classical filtering theory [20, 12, 29].
Quantum filtering has been introduced by Belavkin using martingale methods
[3, 4], see also [6]. The treatment below follows [8, 9] and is based on the
quantum Bayes formula and a trick introduced by Holevo [15].
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4.1 The Filtering Problem

Let (B, ρ) be the quantum probability space with which we model a certain
system of interest, e.g. a two-level atom, a dilute gas of atoms, an atom in
a cavity, or a harmonic oscillator. The system of interest is coupled to the
electromagnetic field (W , φ) which we will take to be in the vacuum state.
The combined system is then described by the quantum probability space
(B ⊗ W ,P) where P = ρ ⊗ φ. Suppose the interaction between the system
of interest and the electromagnetic field is given by a QSDE of the following
type

dUt =
{
LdA∗t − L∗dAt − 1

2
L∗Ldt− iHdt

}
Ut, U0 = I, (4.1)

where L and H are elements in B, H being selfadjoint. For reasons of conve-
nience we have restricted ourselves to only a single channel in the field and
no gauge terms in the QSDE.

We will work in the Heisenberg picture, i.e. the state P remains fixed and
the observables evolve in time according to jt(S) = U∗t SUt where S is an
element in B ⊗W. Let X be a system operator, i.e. X ∈ B, then it follows
from the quantum Itô rule that

djt(X) = jt
(L(X)

)
dt+ jt

(
[L∗, X ]

)
dAt + jt

(
[X,L]

)
dA∗t . (4.2)

We will call Equation (4.2) the system.
In the field we are doing a measurement continuously in time. We will allow

for two possible measurement setups, direct photon detection, for which the
observations are given by Y Λ

t = U∗t ΛtUt, and homodyne detection, for which
the observations are given by Y W

t = U∗t (e−iφtAt+eiφtA∗t )Ut. For convenience
we will choose φt = 0. We will not go further into the details of the homodyne
detection setup here, but instead refer to [2]. Using the quantum Itô rule we
obtain

dY Λ
t = dΛt + jt(L)dA∗t + jt(L∗)dAt + jt(L∗L)dt,

dY W
t = jt(L + L∗)dt+ dAt + dA∗t .

(4.3)

The quantum probability space (B ⊗ W ,P) together with Equations (4.2)
and (4.3) define a system-observations model, in analogy to the system-
observation models in classical stochastic control theory.

Only if the observations at different times commute with each other, can we
observe them in a single realization of an experiment. The requirement that
the observations are commutative is called the self-nondemolition property.
Note that if the observations are self-nondemolition, then they can be mapped
onto a classical stochastic process via the spectral theorem. This classical
stochastic process can be read off from the measurement apparatus while the
measurement is taking place continuously in time. Let us now check that the
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observation processes Y Λ
t and YW

t are indeed self-nondemolition. Let Z be
an operator of the form I ⊗ Z ⊗ I[s on H ⊗ Fs] ⊗ F[s. It follows from the
quantum Itô rules that for all t ≥ s

U∗t ZUt = U∗sZUs+
∫ t

s

U∗rL(Z)Urdr+
∫ t

s

U∗r [Z,L]UrdA∗r+
∫ t

s

U∗r [L∗, Z]UrdAr .

Since Z is a field operator and L and H are system operators, we have that
L(Z) = [L,Z] = [L∗, Z] = 0. Therefore we have U∗t ZUt = U∗sZUs. Using this
result with Z = Λs, we find

[Y Λ
t , Y

Λ
s ] = [U∗t ΛtUt, U

∗
sΛsUs] = [U∗t ΛtUt, U

∗
t ΛsUt] = U∗t [Λt, Λs]Ut = 0,

where we used that [Λt, Λs] = 0. In a similar way we find [Y W
t , Y W

s ] = 0.
That is, both processes Y Λ and YW are self-nondemolition. Note however
that [Y Λ

t , Y
W
t ] �= 0, we can not observe both processes in a single realization

of the experiment.
Define the von Neumann algebra generated by the observations up to

time t by Yt = vN{Ys; 0 ≤ s ≤ t}, where Ys is either Y Λ
s in case of direct

photodetection, or YW
s in case of homodyne detection. We would like to

estimate jt(X) for all operators X ∈ B based on the observations up to time
t. That is, we would like to calculate the conditional expectation P(jt(X)|Yt)
which is the mean least squares estimate of jt(X) given Yt. However, in
order for P(jt(X)|Yt) to be well-defined, we have to show that jt(X) is in the
commutant of Yt. This requirement is called the nondemolition property. To
show that jt(X) is nondemolished by Yt we again use that U∗sZUs = U∗t ZUt
for all operators of the form I⊗Z⊗I[s on H⊗Fs]⊗F[s. If we take Z = As+A∗s
when Ys = Y W

s and Z = Λs when Ys = Y Λ
s , then we obtain

[jt(X), Ys] = [U∗t XUt, U
∗
sZUs] = [U∗t XUt, U

∗
t ZUt] = U∗t [X,Z]Ut = 0,

where we used that [X,Z] = 0 since X is a system operator and Z is a field
operator. This establishes the nondemolition property and therefore also that
P(jt(X)|Yt) is well-defined.

We will now focus on finding the filtering equation, i.e. a recursive equation
for updating P(jt(X)|Yt) in real time. Note that since P(jt(X)|Yt) depends
linearly on X and is positive and normalized, we can define an information
state πt on B by

πt(X) = ι
(
P
(
jt(X)

∣∣Yt

))
,

where ι maps Yt to a classical process via the spectral theorem. Note that
πt is a stochastic state, it depends on the observations up to time t. The
filtering equation propagates the information state πt in time and is driven
by the observations.
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4.2 Change of State

Homodyne Detection
Suppose that we are doing a homodyne detection experiment and that the

interaction between the system of interest and the field is given by Equation
(4.1). Our system-observations pair is then given by the quantum probability
space (B ⊗W,P) and the equations

djt(X) = jt
(L(X)

)
dt+ jt

(
[L∗, X ]

)
dAt + jt

(
[X,L]

)
dA∗t ,

dYt = jt(L+ L∗)dt+ dAt + dA∗t .

Solving the corresponding filtering problem means to find a recursive equa-
tion that propagates P(jt(X)|Yt) in real time. Our strategy will be to change
to a different state Rt, the so-called reference state. We will choose the refer-
ence state Rt such that the observations have independent increments. That
will make it easier to manipulate conditional expectations. Using the Bayes
formula we can relate conditional expectations with respect to Rt back to
conditional expectations with respect to P.

Note that the process As + A∗s , 0 ≤ s ≤ t is a Wiener process under P,
i.e. it has independent increments under P. Therefore, if we define a reference
state

Rt(S) = P(UtSU∗t ), S ∈ U∗t B ⊗WUt,
then we see that under this state the observations Ys = js(As + A∗s) =
jt(As+A∗s) form a Wiener process. That is, under Rt, the observation process
Ys = js(As + A∗s), 0 ≤ s ≤ t has independent increments. Moreover, under
Rt the system jt(X) (X ∈ B) and the observations Ys, 0 ≤ s ≤ t are
independent. From the definition it is immediate that

P(S) = Rt(U∗t SUt), S ∈ B ⊗W.

We would now like to use the Bayes formula with Q = Ut to relate conditional
expectations with respect to P to conditional expectations with respect to Rt.
However, Ut is not in the commutant of Yt. The following trick, in the spirit
of [15], resolves this problem.

We search for an element Qt that satisfies the following two requirements

1. Rt(U∗t SUt) = Rt(Q∗tSQt), S ∈ B ⊗W,
2. Qt is affiliated to the commutant of Yt.

(4.4)

We could then use the Bayes formula with Q = Qt, to obtain

P
(
jt(X)

∣∣Yt

)
=

Rt
(
Q∗t jt(X)Qt

∣∣Yt

)
Rt
(
Q∗tQt

∣∣Yt

) . (4.5)
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The two conditions of Equation (4.4) are satisfied if we can find an element
Qt that satisfies

1. QtU
∗
t v ⊗ Φ = v ⊗ Φ, ∀v ∈ H,

2. Qt is affiliated to the commutant of Yt.
(4.6)

Or equivalently, if we can find an element Vt that satisfies

1. Vtv ⊗ Φ = Utv ⊗ Φ, ∀v ∈ H,
2. Vt is affiliated to the commutant of Ct,

(4.7)

where Ct = UtYtU
∗
t = vN{As + A∗s; 0 ≤ s ≤ t}. Indeed, if Vt satisfies the

conditions in Equation (4.7), then Qt = jt(Vt) satisfies the conditions in
Equation (4.6) and subsequently Equation (4.4). Let Vs for 0 ≤ s ≤ t be
given by

dVt =
{
L
(
dA∗t + dAt

)− 1
2
L∗Ldt− iHdt

}
Vt, V0 = I, (4.8)

then Vtv ⊗ Φ = Utv ⊗ Φ for all v ∈ H. Moreover, the equation is driven by
dAt + dA∗t and the coefficients L and H are in the commutant of Ct, i.e. Vs
is for all 0 ≤ s ≤ t affiliated to the commutant of Ct. We conclude that Vt
given by Equation (4.8) satisfies the conditions in Equation (4.7).

On B we define an unnormalized information state by

σt(X) = Rt(Q∗t jt(X)Qt|Yt) = Rt(jt(V ∗t XVt)|Yt).

From the Bayes rule Equation (4.5) it is immediate that

πt(X) =
σt(X)
σt(I)

. (4.9)

This is the quantum analogue of the classical Kallianpur-Striebel formula. We
will now focus on finding an equation that propagates σt(X) in time. From the
definition of conditional expectations it easily follows that Rt(jt(V ∗t XVt)|Yt)
= U∗t P(V ∗t XVt|Ct)Ut. Since Vt is driven by classical noise, we can resort to
the classical Itô calculus from here onwards. The Itô rule gives

dV ∗t XVt = V ∗t L(X)Vtdt+ V ∗t (L∗X +XL)Vt(dAt + dA∗t ).

In integral form this reads

V ∗t XVt = X +
∫ t

0

V ∗s L(X)Vsds+
∫ t

0

V ∗s (L∗X +XL)Vs(dAs + dA∗s).

Taking the conditional expectation P( · |Ct) of this equation gives
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P
(
V ∗t XVt

∣∣Ct) = P
(
X
∣∣Ct)+

∫ t

0

P
(
V ∗s L(X)Vs

∣∣Ct)ds +∫ t

0

P
(
V ∗s (L∗X +XL)Vs

∣∣Ct)(dAs + dA∗s),

where we have approximated the integrals by simple functions in the usual
way and have taken the integrators out using the module property of the
conditional expectation. For adapted processes Ls we have that P(Ls|Ct) =
P(Ls|Cs) for all s ≤ t. This is where our clever choice for the reference state Rt

pays off. We use here that C[s,t] is independent of Cs under P, or equivalently,
that Y[s,t] is independent of Ys under Rt. Note that that is exactly how we
had chosen the reference state Rt. This means we now have

P
(
V ∗t XVt

∣∣Ct) = P(X) +
∫ t

0

P
(
V ∗s L(X)Vs

∣∣Cs)ds +∫ t

0

P
(
V ∗s (L∗X +XL)Vs

∣∣Cs)(dAs + dA∗s).

Sandwiching with Ut leads to the following linear quantum filtering equation

dσt(X) = σt
(L(X)

)
dt+ σt(L∗X +XL)dYt.

This equation is the quantum analogue of the classical Duncan-Mortensen-
Zakai equation [20, 12, 29]. Using the Kallianpur-Striebel formula Equation
(4.9) and the Itô rule, we obtain the normalized quantum filtering equation

dπt(X) = πt
(L(X)

)
dt+

(
πt(L∗X+XL)−πt(L∗+L)πt(X)

)(
dYt−πt(L∗+L)dt

)
.

(4.10)

This equation is a quantum analogue of the classical Kushner-Stratonovich
equation. The process dYt−πt(L∗+L)dt driving the quantum filter is called
the innovations or the innovating martingale. In subsection 4.3 we will prove
that the innovations indeed form a martingale.

Direct Photodetection
Now suppose that instead of a homodyne detection experiment we are

directly counting photons in the field. Our system-observations pair is then
given by the quantum probability space (B ⊗W ,P) and the equations

djt(X) = jt
(L(X)

)
dt+ jt

(
[L∗, X ]

)
dAt + jt

(
[X,L]

)
dA∗t ,

dYt = dΛt + jt(L)dA∗t + jt(L∗)dAt + jt(L∗L)dt.

To solve the corresponding filtering problem, we again change to a differ-
ent state Rt, the so-called reference state for the counting experiment. We
choose the reference state such that the observation process has independent
increments. Moreover, we want the measure induced on the observations Yt

by the reference measure Rt to be absolutely continuous with respect to the
measure induced by P. This last requirement rules out the reference state we
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used previously for the homodyne case, since under this measure the counting
observations will be identical zero, whereas under P this is not the case. If
we would ignore this problem and would proceed naively with the reference
state from the previous section, we would find that we are unable to find a
suitable Radon-Nikodym derivative Qt.

We solve the above difficulty by using a reference state that turns the
observations into a Poisson process. Let the Weyl operator Wt be given by

dWt =
{
dAt − dA∗t −

1
2
dt

}
Wt, W0 = I.

Define U ′t = WtUt, then U ′t satisfies the following QSDE

dU ′t =
{

(L− I)dA∗t − (L∗ − I)dAt − 1
2
(L∗L+ I − 2L+ 2iH)dt

}
, U ′0 = I.

(4.11)
Let the reference state Rt be given by

Rt(S) = P(U ′tSU ′t
∗), S ∈ U ′t∗B ⊗WU ′t.

Note that under Rt we have that the process Ys, 0 ≤ s ≤ t is a Poisson
process, i.e. the observations have independent increments. Moreover, note
that under Rt jt(X) and Ys = js(Λs) = jt(Λs) are independent for all X ∈ B.
From the definition it is immediate that

P(S) = Rt(U ′t
∗
SU ′t), S ∈ B ⊗W.

As before we would now like to apply the Bayes formula. However, Equation
(4.11) shows that U ′t is not in the commutant of Yt. We will use the same
trick as before to solve this problem [15].

We search for an element Qt that satisfies the following two requirements

1. Rt(U ′t
∗
SU ′t) = Rt(Q∗tSQt), S ∈ B ⊗W,

2. Qt is affiliated to the commutant of Yt.
(4.12)

These conditions are satisfied if we can find an element Qt that satisfies

1. QtU
′
t
∗
v ⊗ Φ = v ⊗ Φ, ∀v ∈ H,

2. Qt is affiliated to the commutant of Yt.
(4.13)

Or equivalently, if we can find an element Vt that satisfies

1. V ′t v ⊗ Φ = U ′tv ⊗ Φ, ∀v ∈ H,
2. V ′t is affiliated to the commutant of Ct,

(4.14)

where Ct = U ′tYtU
′
t
∗ = vN{WsΛsW

∗
s ; 0 ≤ s ≤ t}. Indeed, if we can find a V ′t

satisfying Equation (4.14), then Qt = U ′t
∗
V ′tU

′
t satisfies Equations (4.13) and
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(4.12). Note that Zt = WtΛtW
∗
t is given by

dZt = dΛt + dAt + dA∗t + dt, Z0 = 0.

Let V ′s for 0 ≤ s ≤ t be given by

dV ′t =
{

(L− 1)dZt − 1
2
(L∗L+ I + 2iH)dt

}
V ′t , V0 = I, (4.15)

then V ′t v ⊗ Φ = U ′tv ⊗ Φ for all v ∈ H. Moreover, the equation is driven
by dZt and the coefficients L and H are in the commutant of Ct, i.e. V ′s is
affiliated to the commutant of Ct for all 0 ≤ s ≤ t. This means that V ′t given
by Equation (4.15) satisfies the conditions in Equation (4.14).

We can now apply the Bayes formula with Qt = U ′t
∗V ′tU

′
t, i.e.

P
(
jt(X)

∣∣Yt

)
=

Rt
(
Q∗t jt(X)Qt

∣∣Yt

)
Rt(Q∗tQt|Yt)

, X ∈ B.

On B we define an unnormalized information state by

σt(X) = Rt
(
Q∗t jt(X)Qt

∣∣Yt

)
= Rt

(
U ′t
∗
V ′t
∗
XV ′tU

′
t

∣∣Yt

)
,

where in the second step we used that X ∈ B commutes with Wt. From the
Bayes formula it is immediate that

πt(X) =
σt(X)
σt(I)

, X ∈ B. (4.16)

We will now focus on finding an equation that propagates σt(X) in time.
From the definition of the conditional expectation it easily follows that
Rt
(
U ′t
∗
V ′t
∗
XV ′tU

′
t

∣∣Yt

)
= U ′t

∗
P(V ′t

∗
XV ′t |Ct)U ′t . The Itô rule gives

dV ′t
∗
XV ′t = V ′t

∗L(X)V ′t dt+ V
′
t (L

∗XL−X)V ′t (dZt − dt).

Using analogous arguments as in the homodyne case, we obtain the linear
quantum filter

σt(X) = σt
(L(X)

)
dt+

(
σt(L∗XL)− σt(X)

)(
dYt − dt

)
.

Using Equation (4.16) and the Itô rule, we obtain the normalized quantum
filter for photon counting

dπt(X) = πt
(L(X)

)
dt+

(
πt(L∗XL)
πt(L∗L)

− πt(X)
)(
dYt − πt(L∗L)dt

)
.

The process dYt−πt(L∗L)dt is called the innovations or the innovating mar-
tingale for the photon counting experiment. In the next subsection we prove
that this process indeed forms a martingale.
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4.3 Innovations

In martingale based approaches to quantum filtering [4],[6], the following the-
orem is the starting point. The proof below is an adaptation to the Heisenberg
picture of the proof in [6]. It can also be found in [8], [7].

Theorem 4.1. Let Yt be given by Yt = U∗t ZtUt, where dZt = atdΛt+btdAt+
btdA

∗
t , Z0 = 0 and at ∈ R and bt ∈ C for all t ≥ 0. Denote by Yt the von

Neumann algebra generated by Ys for 0 ≤ s ≤ t. Define the innovations Ỹt by

Ỹt = Yt −
∫ t

0

P

(
asU

∗
sL
∗LUs + bsU∗sLUs + bsU∗sL

∗Us
∣∣Ys

)
ds.

The innovations are a martingale, i.e. P(Ỹt|Ys) = Ỹs for all 0 ≤ s ≤ t.
Proof. We have to show that P(Ỹt− Ỹs|Ys) = 0 for all 0 ≤ s ≤ t. This means
we need to prove that P

(
(Ỹt − Ỹs)K

)
= 0 for all 0 ≤ s ≤ t and K ∈ Ys. This

is equivalent to showing that

P(YtK)− P(YsK) =
∫ t

s

P

(
P(arU∗rL

∗LUr + brU∗rLUr + brU∗rL
∗Ur|Yr)K

)
dr,

for all 0 ≤ s ≤ t and for all K ∈ Ys. For t = s the above equation is obviously
true. It therefore remains to show that for all K ∈ Ys and all s ≤ r ≤ t

dP(YrK) = P

(
P(arU∗rL

∗LUr + brU∗rLUr + brU∗rL
∗Ur|Yr)K

)
dr

= P

(
arU

∗
rL

∗LUrK + brU∗rLUrK + brU∗rL
∗UrK

)
dr.

This is just a simple exercise in applying the quantum Itô rule and the relation
Yr = U∗rZrUr.
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