Skip to main content
Log in

Quantum Flows as Markovian Limit of Emission, Absorption and Scattering Interactions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a Markovian approximation, of weak coupling type, to an open system perturbation involving emission, absorption and scattering by reservoir quanta. The result is the general form for a quantum stochastic flow driven by creation, annihilation and gauge processes. A weak matrix limit is established for the convergence of the interaction-picture unitary to a unitary, adapted quantum stochastic process and of the Heisenberg dynamics to the corresponding quantum stochastic flow: the convergence strategy is similar to the quantum functional central limits introduced by Accardi, Frigerio and Lu [1]. The principal terms in the Dyson series expansions are identified and re-summed after the limit to obtain explicit quantum stochastic differential equations with renormalized coefficients. An extension of the Pulé inequalities [2] allows uniform estimates for the Dyson series expansion for both the unitary operator and the Heisenberg evolution to be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi, L., Frigerio, A., Lu, Y.G.: Weak coupling limit as a quantum functional central limit theorem. Commun. Math. Phys. 131, 537–570 (1990)

    Google Scholar 

  2. Pulé, J.V.: The Bloch equations. Commun. Math. Phys. 38, 241–256 (1974)

    Google Scholar 

  3. Hudson, R.L., Streater R.F.: Itô’s formula is the chain rule with Wick ordering. Phys. Lett. 86, 277–279 (1982)

    Google Scholar 

  4. Krée, P., Raczka, R.: Kernels and symbols of operators in quantum field theory. Ann. Inst. H. Poincaré, Sect. A, 28, 41–73 (1978)

    Google Scholar 

  5. Gough, J.: Asymptotic stochastic transformations for non-linear quantum dynamical systems. Reports Math. Phys. 44(3), 313–338 (1999)

    Article  MATH  Google Scholar 

  6. Van Hove, L.: Quantum mechanical perturbations giving rise to a statistical transport equation. Physica. 21, 617–640 (1955)

    Google Scholar 

  7. Hudson, R.L., Parthasarathy, K.R.: Quantum Itô’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984)

    Google Scholar 

  8. Wong, E., Zakai, M.: On the relationship between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3, 213–229 (1965)

    Google Scholar 

  9. Frigerio, A., Gorini V.: Diffusion processes, quantum dynamical semigroups, and the classical KMS condition. J. Math. Phys. 25(4), 1050–1065 (1984)

    Article  Google Scholar 

  10. Bismut, J.M.: Mecanique Aléatoire. Lecture Notes in Mathematics 866, Berlin: Springer-Verlag, 1981

  11. Spohn, H.: Kinetic Equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53, 569–615 (1980)

    Article  MathSciNet  Google Scholar 

  12. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)

    MATH  Google Scholar 

  13. Davies, E.B.: Quantum theory of Open Systems. London, New York: Academic Press, 1976

  14. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups on N-level systems. J. Math. Phys. 17, 821–825 (1976)

    Article  Google Scholar 

  15. Lindblad, G.: On the generators of completely positive semi-groups. Commun. Math. Phys. 48, 119–130 (1976)

    MATH  Google Scholar 

  16. Von Waldenfels, W.: Itô Solution of the Linear Quantum Stochastic Differential Equation Describing Light Emission and Absorption. Lecture Notes in Mathematics 1055, Berlin Heidelberg-New York: Springer, 1986, pp. 384–411

  17. Spohn, H., Lebowitz, J.L.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109–142 (1978)

    Google Scholar 

  18. Chebotarev, A.N.: Symmetric form of the Hudson-Parthasarathy equation. Mat. Zametki 60(5), 725–750 (1996)

    Google Scholar 

  19. Gough, J.: Noncommutative Markov approximations. Dokl. Akad. Nauk. 379(6), 112–116 (2001)

    MATH  Google Scholar 

  20. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Basel: Birkhaüser, 1992

  21. Riordan, J.: An Introduction to Combinatorial Analysis. New York: Wiley, 1980

  22. Rota, G.-C., Wallstrom, T.C.: Stochastic integrals: a combinatorial approach. Ann Probab. 25, 1257–1283 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E.: Methods of Quantum field Theory in Statistical Physics. New York: Dover Publications, 1963

  24. Pathria, K.R.: Statistical Mechanics. Oxford: Butterworth-Heinemann, 1972

  25. Gough, J.: A new approach to non-commutative white noise analysis. C.R. Acad. Sci. Paris t. 326, série I, 981–985 (1998)

  26. Accardi, L., Frigerio, A., Lu, Y.G.: The quantum weak coupling limit (II): Langevin equation and finite temperature case. Publ. RIMS Kyoto 31, 545–599 (1995)

    MATH  Google Scholar 

  27. Accardi, L., Lu,Y.G., Volovich, I.V.: Quantum Theory and its Stochastic Limit. Berlin Heidelberg: Springer-Verlag, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Gough.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gough, J. Quantum Flows as Markovian Limit of Emission, Absorption and Scattering Interactions. Commun. Math. Phys. 254, 489–512 (2005). https://doi.org/10.1007/s00220-004-1163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1163-y

Keywords

Navigation