Skip to main content

The Role of Various Types of Mycorrhizal Fungi in Nutrient Cycling and Plant Competition

  • Chapter
Mycorrhizal Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 157))

Abstract

More than 90% of terrestrial plant species associate with mycorrhizal fungi. These fungi play an important role in the mineral nutrition of plants. This chapter focuses on the ability of various mycorrhiza-types: arbuscular mycorrhizal fungi (AMF), ecto-mycorrhizal fungi (EMF) and ericoid mycorrhizal fungi to utilise different soil nutrient sources (EMF and ericoid mycorrhizal fungi: organic N; AMF: inorganic P) and the consequences of this ability for plant competition and plant-soil feed-backs. A conceptual model is presented which shows that this differentiation in the use of various inorganic and organic nutrient sources may create positive feed-backs between plant species dominance, litter chemistry, litter decomposition, and the dominant mycorrhiza type. However, the mycorrhizal impact, especially of ericoid mycorrhizal fungi and ecto-mycorrhizal fungi, on this triad of plant nutrition, plant competition, and ecosystem functioning can be strongly reduced under high levels of atmospheric nitrogen input. As increased N input leads to a relative P shortage in ecosystems, it can be expected that arbuscular mycorrhizal fungal species become progressively more dominant. However, the effects of increased N supply on AMF colonisation are very variable. Studies show that positive, negative or no effects are found in almost equal proportions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuarghub SM; Read DJ (1988a) The biology of mycorrhiza in the Ericaceae. XI. The distribution of nitrogen in soil of a typical upland Callunetum with special reference to the ‘free’ amino acids. New Phytol 108: 425 – 431

    Article  Google Scholar 

  • Abuarghub SM, Read DJ (1988b) The biology of mycorrhiza in the Ericaceae. XII. Quantitative analysis of individual ‘free’ amino acids in relation to time and depth in the soil profile. New Phytol 108: 433–441

    Google Scholar 

  • Aerts R (1993) Competition between dominant plant species in heathlands. In: Aerts R, Heil GW (eds) Heathlands, patterns and processes in a changing environment. Kluwer, Dordrecht, pp 125 - 151

    Google Scholar 

  • Aerts R (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs, and plant-soil feedbacks. J Exp Bot 50: 29 - 37

    CAS  Google Scholar 

  • Aerts R, Berendse F (1988) The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio 76: 63 - 69

    Google Scholar 

  • Aerts R, Bobbink R (1999) The impact of atmospheric nitrogen deposition on vegetation processes in terrestrial, non-forest ecosystems. In: Langan SI (ed) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer, Dordrecht, pp 85 - 122

    Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30: 1 - 67

    Article  CAS  Google Scholar 

  • Aerts R, Heil GW (eds) (1993) Heathlands, patterns and processes in a changing environment. Kluwer, Dordrecht

    Google Scholar 

  • Aerts R, van der Peijl MJ (1993) A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos 66: 144 - 147

    Article  Google Scholar 

  • Aerts R, Berendse F, De Caluwe H, Schmitz M (1990) Competition in heathland along an experimental gradient of nutrient availability. Oikos 57: 310 - 318

    Article  Google Scholar 

  • Aerts R, Boot RGA, van der Aart PJM (1991) The relation between above-and below-ground biomass allocation patterns and competitive ability. Oecologia 87: 551 - 559

    Article  Google Scholar 

  • Caporn SJM, Song W, Read DJ, Lee JA (1995) The effect of repeated nitrogen fertilization on mycorrhizal colonization in heather [Calluna vulgaris ( L.) Hull]. New Phytol 129: 605-609

    Google Scholar 

  • Chapin FS (1995) New cog in the nitrogen cycle. Nature 377: 199 - 200

    Article  CAS  Google Scholar 

  • Chapin FS, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64: 376 - 391

    Article  CAS  Google Scholar 

  • Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361: 150 - 153

    Article  CAS  Google Scholar 

  • Dighton J (1991) Acquisition of nutrients from organic resources by mycorrhizal autotrophic plants. Experientia 47: 362 - 369

    Article  Google Scholar 

  • Hartley SE, Amos L (1999) Competitive interactions between Nardus stricta L. and Cal-luna vulgaris (L.) Hull: the effect of fertilizer and defoliation on above-and below-ground performance. J Ecol 87: 330 - 340

    Article  Google Scholar 

  • Hobbie EA, Macko SE, Shugart HH (1999) Interpretation of nitrogen isotope signatures using the NIFTE model. Oecologia 120: 405 - 415

    Article  Google Scholar 

  • Högberg P (1997) 15 N natural abundance in soil-plant systems. New Phytol 137:179-203

    Google Scholar 

  • Johnson D, Leake JR, Lee JA, Campbell CD (1998) Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands. Environ Pollut 103: 239 - 250

    Article  CAS  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK (1999) Coupling of nutrient cycling and carbon dynamics in the Arctic, integration of soil microbial and plant processes. Appl Soil Ecol 11: 135 - 146

    Article  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12: 139 - 143

    Article  PubMed  CAS  Google Scholar 

  • Kerley SJ, Read DJ (1995) The biology of mycorrhiza in the Ericaceae, XV Chitin degradation by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host plant. New Phytol 131: 369 - 375

    Article  CAS  Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75: 2373 - 2383

    Article  Google Scholar 

  • Koerselman W, Verhoeven JTA (1992) Nutrient dynamics in mires of various trophic status: nutrient inputs and outputs and the internal nutrient cycle. In: Verhoeven JTA (ed) Fens and bogs in the Netherlands: vegetation, history, nutrient dynamics and conservation. Kluwer, Dordrecht, pp 397 - 432

    Google Scholar 

  • Kumar BM, Deepu JK (1992) Litter production and decomposition dynamics in moist deciduous forests of the Western Ghats in Peninsular India. For Ecol Manage 50: 181 - 201

    Article  Google Scholar 

  • Leake JR, Miles W (1996) Phosphodiesters as mycorrhizal P sources. I. Phosphodiesterase production and the utilization of DNA as a phosphorus source by the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytol 132: 435 - 443

    Article  CAS  Google Scholar 

  • Michelsen AS, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15 N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105: 53 - 63

    Google Scholar 

  • Michelsen AS, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115: 406 - 418

    Article  Google Scholar 

  • Morris JT (1991) Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition. Annu Rev Ecol Syst 22: 257 - 279

    Article  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Gieslr R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392: 914 - 916

    Article  Google Scholar 

  • Northup RR, Yu Z, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377: 227 - 229

    Article  CAS  Google Scholar 

  • Ozinga WA, van Andel J, McDonnell-Alexander MP (1997) Nutritional soil heterogeneity and mycorrhiza as determinants of plant species diversity. Acta Bot Neerl 46: 237 - 254

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376 - 391

    Article  Google Scholar 

  • Read DJ (1996) The structure and function of the Ericoid Mycorrhizal root. Ann Bot 77: 365 - 374

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton Univ Press, Princeton Nutrient Cycling and Plant Competition 133

    Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA Mycorrhizal plants. CRC Press, Boca Raton, pp 5 - 25

    Google Scholar 

  • Van Cleve K, Alexander V (1981) Nitrogen cycling in tundra and boreal ecosystems. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Ecol Bull 33: 375 - 404

    Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Steitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998a) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69 - 72

    Article  CAS  Google Scholar 

  • Van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998b) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 2082 - 2091

    Article  Google Scholar 

  • Van Vuuren MMI, Berendse F, De Visser W (1993) Species and site differences in the decomposition of litters and roots from wet heathlands. Can J Bot 71: 167 - 173

    Article  Google Scholar 

  • Vermeer C (1995) Uptake of organic nitrogen by plants: implications for plant nutrition and the nitrogen cycle. MSc Thesis, Utrecht University

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aerts, R. (2003). The Role of Various Types of Mycorrhizal Fungi in Nutrient Cycling and Plant Competition. In: van der Heijden, M.G.A., Sanders, I.R. (eds) Mycorrhizal Ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38364-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00204-8

  • Online ISBN: 978-3-540-38364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics