Skip to main content

Outlook on Next Generation Technologies and Strategy Considerations for ADC Process Development and Manufacturing

  • Chapter
  • First Online:
Innovations for Next-Generation Antibody-Drug Conjugates

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

In the chapter, we review new conjugation technologies from the standpoints of process development and manufacturability and identify potential process hotspots. We briefly review recent progress in conventional conjugation methods and assess, for instance, how new linkers impact process. We also consider antibody modeling and its untapped potential to help design ADCs. We address outsourcing options and trends and provide an overview of single use technologies. Finally, strategies for efficient early process development to ensure CMC consistency across clinical phases and manufacturing scales and ensure readiness for accelerated regulatory approval paths are discussed.

Content herein does not necessarily reflect the positions of Astellas and its affiliate Agensys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While we tried to support comments and positions with literature or conference reports, publications on ADC process development are scarce and some considerations are based on the author’s experience and assessment.

  2. 2.

    Marcq O, Tawfiq Z, Parker R, Tomas F, Zhu M (2017 - Unpublished Data).

  3. 3.

    Marcq O, Schwartz I, Tawfiq Z, Tomas F, Zhu M (2016 – Unpublished Data).

  4. 4.

    Hippach M, Kyung S Y, Kikuchi T, Kawai Y, Huynh J, Gredder J, Zhu M (2017 – Unpublished Data). Enhancing Production of an Engineered Antibody Containing Non-native Amino Acid for Site-Specific Conjugation: Considerations for Early and Late Stage Development.

  5. 5.

    As of June 19, 2017, based on public information releases from Seattle Genetics.

  6. 6.

    Marcq O, Tawfiq Z, Parker R, Tomas F, Zhu M (2017 - Unpublished Data)

  7. 7.

    Sandeep Kumar, Pfizer (2017 – Personal Communication).

Abbreviations

ADC:

Antibody Drug Conjugate

ADC:

Antibody Drug Conjugate

BDS:

Bulk Drug Subtance

BDS:

Bulk Drug Subtance

BLA:

Biologics License Application

BLA:

Biologics License Application

Cit:

Citruline

CMO:

Contract Manufacturing Organization

CQA:

Critical Quality Attribute

Cys:

Cysteine

DAR:

Drug Antibody Ratio

DL:

Drug Linker

DoE:

Design of Experiments

DP:

Drug Product

DS:

Drug Substance

DSI:

Drug Substance Intermediate

FIP:

First In Patient

HIPS:

Hydrazino-Pictet-Spengler

MED:

Minimum Effective Dose

MFG:

Manufacturing

MTD:

Maximum Tolerated Dose

NNAA:

Non-Natural Amino Acid

PBD:

Pyrrolobenzodiazepine

PEG:

Polyethylene Glycol

PK:

Pharmacokinetics

POC:

Proof Of Concept

PPE:

Personal Protection Equipment

QA:

Quality Attribute

QbD:

Quality by Design

SME:

Subject Matter Expert

SPAAC:

Strain promoted azide–alkyne cycloaddition

SUT:

Single Use Technology

TFF:

Tangential Flow Filtration

TI:

Therapeutic Index

UAA:

Un-natural Amino Acid

UF/DF:

Ultrafiltration/Diafiltration

References

  1. Beck A, Goetsch L, Dumontet C, Corvaia N (2017) Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16(5):315–337

    Article  PubMed  CAS  Google Scholar 

  2. Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Hiroshi Morisaki J, Kim J, Park S, Darwish M, Lee B-C, Hernandez H, Loyet KM, Lupardus P, Fong R, Yan D, Chalouni C, Luis E, Khalfin Y, Plise E, Cheong J, Lyssikatos JP, Strandh M, Koefoed K, Andersen PS, Flygare JA, Wah Tan M, Brown EJ, Mariathasan S (2015) Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527:323

    Article  PubMed  CAS  Google Scholar 

  3. Lim RK, Yu S, Cheng B, Li S, Kim N-J, Cao Y, Chi V, Kim JY, Chatterjee AK, Schultz PG, Tremblay MS, Kazane SA (2015) Targeted delivery of LXR agonist using a site-specific antibody–drug conjugate. Bioconjug Chem 26(11):2211–2222

    Article  CAS  Google Scholar 

  4. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianferani S (2013) Characterization of therapeutic antibodies and related products. Anal Chem 85(2):715–736

    Article  PubMed  CAS  Google Scholar 

  5. Wakankar A, Chen Y, Gokarn Y, Jacobson FS (2011) Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs 3(2):161–172

    Article  PubMed  PubMed Central  Google Scholar 

  6. Agarwal P, Bertozzi CR (2015) Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem 26(2):176–192

    Article  PubMed  CAS  Google Scholar 

  7. Deonarain MP, Yahioglu G, Stamati I, Marklew J (2015) Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discovery 10(5):463–481

    Article  CAS  Google Scholar 

  8. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou H-R, Upeslacis J, Shochat D, Mountain A, Flowers DA, Bernstein I (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody−calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13(1):47–58

    Article  PubMed  CAS  Google Scholar 

  9. Chari RVJ (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41(1):98–107

    Article  PubMed  CAS  Google Scholar 

  10. Hu X, Bortell E, Kotch FW, Xu A, Arve B, Freese S (2017) Development of commercial-ready processes for antibody drug conjugates. Org Process Res Dev 21(4):601–610

    Article  CAS  Google Scholar 

  11. Kim MT, Chen Y, Marhoul J, Jacobson F (2014) Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem 25(7):1223

    Article  PubMed  CAS  Google Scholar 

  12. Lyon RP, Meyer D, Setter JR, Senter PD (2012) Conjugation of anticancer drugs through endogenous monoclonal antibody cysteine residues. Methods Enzymol 502:123

    Article  PubMed  CAS  Google Scholar 

  13. Wiggins B, Liu-Shin L, Yamaguchi H, Ratnaswamy G (2015) Characterization of cysteine-linked conjugation profiles of immunoglobulin g1 and immunoglobulin G2 antibody–drug conjugates. J Pharm Sci 104(4):1362–1372

    Article  PubMed  CAS  Google Scholar 

  14. Marcq O (2015) Impact on new linker payloads on drug substance quality attributes and process solutions. BPD Week, Huntington Beach, IBC Life Science

    Google Scholar 

  15. Adem YT, Schwarz KA, Duenas E, Patapoff TW, Galush WJ, Esue O (2014) Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug Chem 25(4):656–664

    Article  PubMed  CAS  Google Scholar 

  16. Guo J, Kumar S, Chipley M, Marcq O, Gupta D, Jin Z, Tomar DS, Swabowski C, Smith J, Starkey JA, Singh SK (2016) Characterization and higher-order structure assessment of an interchain cysteine-based ADC: impact of drug loading and distribution on the mechanism of aggregation. Bioconjug Chem 27(3):604–615

    Article  PubMed  CAS  Google Scholar 

  17. Prashad AS, Nolting B, Patel V, Xu A, Arve B, Letendre L (2017) From R&D to clinical supplies. Org Process Res Dev 21(4):590–600

    Article  CAS  Google Scholar 

  18. Cumnock K, Tully T, Cornell C, Hutchinson M, Gorrell J, Skidmore K, Chen Y, Jacobson F (2013) Trisulfide modification impacts the reduction step in antibody–drug conjugation process. Bioconjug Chem 24(7):1154–1160

    Article  PubMed  CAS  Google Scholar 

  19. Liu R, Chen X, Dushime J, Bogalhas M, Lazar AC, Ryll T, Wang L (2017) The impact of trisulfide modification of antibodies on the properties of antibody-drug conjugates manufactured using thiol chemistry. MAbs 9(3):490–497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Badescu G, Bryant P, Bird M, Henseleit K, Swierkosz J, Parekh V, Tommasi R, Pawlisz E, Jurlewicz K, Farys M, Camper N, Sheng X, Fisher M, Grygorash R, Kyle A, Abhilash A, Frigerio M, Edwards J, Godwin A (2014) Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem 25(6):1124

    Article  PubMed  CAS  Google Scholar 

  21. Morais M, Nunes JPM, Karu K, Forte N, Benni I, Smith MEB, Caddick S, Chudasama V, Baker JR (2017) Optimisation of the dibromomaleimide (DBM) platform for native antibody conjugation by accelerated post-conjugation hydrolysis. Org Biomol Chem 15(14):2947–2952

    Article  PubMed  CAS  Google Scholar 

  22. Behrens CR, Ha EH, Chinn LL, Bowers S, Probst G, Fitch-Bruhns M, Monteon J, Valdiosera A, Bermudez A, Liao-Chan S, Wong T, Melnick J, Theunissen J-W, Flory MR, Houser D, Venstrom K, Levashova Z, Sauer P, Migone T-S, van der Horst EH, Halcomb RL, Jackson DY (2015) Antibody–drug conjugates (ADCs) derived from interchain cysteine cross-linking demonstrate improved homogeneity and other pharmacological properties over conventional heterogeneous ADCs. Mol Pharm 12(11):3986–3998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hamann PR (2005) Monoclonal antibody-drug conjugates. Expert Opin Ther Pat 15(9):1087

    Article  CAS  Google Scholar 

  24. Hinman LM, Hamann PR, Wallace R, Menendez AT, Durr FE, Upeslacis J (1993) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53(14):3336–3342

    PubMed  CAS  Google Scholar 

  25. Rodwell JD, McKearn TJ (1987) Antibody conjugates for the delivery of compounds to target sites. Patent Number US4671958 A

    Google Scholar 

  26. Zuberbuhler K, Casi G, Bernardes GJL, Neri D (2012) Fucose-specific conjugation of hydrazide derivatives to a vascular-targeting monoclonal antibody in IgG format. Chem Commun 48(56):7100–7102

    Article  CAS  Google Scholar 

  27. van Geel R, Wijdeven MA, Heesbeen R, Verkade JMM, Wasiel AA, van Berkel SS, van Delft FL (2015) Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mAbs provides homogeneous and highly efficacious antibody–drug conjugates. Bioconjug Chem 26(11):2233–2242

    Article  PubMed  CAS  Google Scholar 

  28. Zhu Z, Ramakrishnan B, Li J, Wang Y, Feng Y, Prabakaran P, Colantonio S, Dyba MA, Qasba PK, Dimitrov DS (2014) Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. MAbs 6(5):1190–1200

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zeglis BM, Davis CB, Aggeler R, Kang HC, Chen A, Agnew B, Lewis JS (2013) An enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug Chem 24:1057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li X, Fang T, Boons G-J (2014) Preparation of well-defined antibody–drug conjugates through glycan remodeling and strain-promoted azide–alkyne cycloadditions. Angew Chem Int Ed 53(28):7179–7182

    Article  CAS  Google Scholar 

  31. Zhou Q, Stefano JE, Manning C, Kyazike J, Chen B, Gianolio DA, Park A, Busch M, Bird J, Zheng X, Simonds-Mannes H, Kim J, Gregory RC, Miller RJ, Brondyk WH, Dhal PK, Pan CQ (2014) Site-specific antibody–drug conjugation through glycoengineering. Bioconjug Chem 25(3):510–520

    Article  PubMed  CAS  Google Scholar 

  32. Stan AC, Radu DL, Casares S, Bona CA, Brumeanu T-D (1999) Antineoplastic efficacy of doxorubicin enzymatically assembled on galactose residues of a monoclonal antibody specific for the carcinoembryonic antigen. Cancer Res 59(1):115–121

    PubMed  CAS  Google Scholar 

  33. Zhong X, Prashad AS, Kriz RW, He T, Somers W, Wang W, Letendre LJ (2017) Capped and uncapped antibody cysteines, and their use in antibody-drug conjugation. Patent Number WO2017025897 A2

    Google Scholar 

  34. Dimasi N, Fleming R, Zhong H, Bezabeh B, Kinneer K, Christie RJ, Fazenbaker C, Wu H, Gao C (2017) Efficient preparation of site-specific antibody–drug conjugates using cysteine insertion. Mol Pharm 14(5):1501–1516

    Article  PubMed  CAS  Google Scholar 

  35. Shinmi D, Nakano R, Mitamura K, Suzuki-Imaizumi M, Iwano J, Isoda Y, Enokizono J, Shiraishi Y, Arakawa E, Tomizuka K, Masuda K (2017) Novel anticarcinoembryonic antigen antibody–drug conjugate has antitumor activity in the existence of soluble antigen. Cancer Med 6(4):798–808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Shinmi D, Taguchi E, Iwano J, Yamaguchi T, Masuda K, Enokizono J, Shiraishi Y (2016) One step conjugation method for site-specific antibody-drug conjugates through reactive cysteine-engineered antibodies. Bioconjug Chem 27:1324

    Article  PubMed  CAS  Google Scholar 

  37. Thompson P, Bezabeh B, Fleming R, Pruitt M, Mao S, Strout P, Chen C, Cho S, Zhong H, Wu H, Gao C, Dimasi N (2015) Hydrolytically stable site-specific conjugation at the N-terminus of an engineered antibody. Bioconjug Chem 26(10):2085–2096

    Article  PubMed  CAS  Google Scholar 

  38. Harris L, Tavares D, Rui L, Maloney E, Wilhelm A, Costoplus J, Archer K, Bogalhas M, Harvey L, Wu R, Chen X, Xu X, Connaughton S, Wang L, Whiteman K, Ab O, Hong E, Widdison W, Shizuka M, Miller M, Pinkas J, Keating T, Chari R, Fishkin N (2015) Abstract 647: SeriMabs: N-terminal serine modification enables modular, site-specific payload incorporation into antibody-drug conjugates (ADCs). Cancer Res 75(15 Supplement):647–647

    Article  Google Scholar 

  39. Jeger S, Zimmermann K, Blanc A, Grünberg J, Honer M, Hunziker P, Struthers H, Schibli R (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed 49(51):9995–9997

    Article  CAS  Google Scholar 

  40. Dennler P, Chiotellis A, Fischer E, Bregeon D, Belmant C, Gauthier L, Lhospice F, Romagne F, Schibli R (2014) Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug Chem 25(3):569

    Article  PubMed  CAS  Google Scholar 

  41. Lhospice F, Brégeon D, Belmant C, Dennler P, Chiotellis A, Fischer E, Gauthier L, Boëdec A, Rispaud H, Savard-Chambard S, Represa A, Schneider N, Paturel C, Sapet M, Delcambre C, Ingoure S, Viaud N, Bonnafous C, Schibli R, Romagné F (2015) Site-specific conjugation of monomethyl auristatin E to anti-CD30 antibodies improves their pharmacokinetics and therapeutic index in rodent models. Mol Pharm 12(6):1863–1871

    Article  PubMed  CAS  Google Scholar 

  42. Strop P, Dorywalska MG, Rajpal A, Shelton D, Liu SH, Pons J, Dushin R (2012) Engineered polypeptide conjugates and methods for making thereof using transglutaminase. Patent Number 2,012,059,882

    Google Scholar 

  43. Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, Ho WH, Farias S, Casas MG, Abdiche Y, Zhou D, Chandrasekaran R, Samain C, Loo C, Rossi A, Rickert M, Krimm S, Wong T, Chin SM, Yu J, Dilley J, Chaparro-Riggers J, Filzen GF, O’Donnell CJ, Wang F, Myers JS, Pons J, Shelton DL, Rajpal A (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20(2):161

    Article  PubMed  CAS  Google Scholar 

  44. Beerli RR, Hell T, Merkel AS, Grawunder U (2015) Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One 10(7):e0131177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bellucci JJ, Bhattacharyya J, Chilkoti A (2015) A noncanonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins. Angew Chem Int Ed 54(2):441–445

    CAS  Google Scholar 

  46. Stefan N, Gébleux R, Waldmeier L, Hell T, Escher M, Wolter FI, Grawunder U, Beerli RR (2017) Highly potent, anthracycline-based antibody drug conjugates generated by enzymatic, site-specific conjugation. Mol Cancer Ther 16(5):879–892

    Article  PubMed  CAS  Google Scholar 

  47. Bruins JJ, Westphal AH, Albada B, Wagner K, Bartels L, Spits H, van Berkel WJH, van Delft FL (2017) Inducible, site-specific protein labeling by tyrosine oxidation–strain-promoted (4 + 2) cycloaddition. Bioconjug Chem 28(4):1189–1193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Drake PM, Albers AE, Baker J, Banas S, Barfield RM, Bhat AS, de Hart GW, Garofalo AW, Holder P, Jones LC, Kudirka R, McFarland J, Zmolek W, Rabuka D (2014) Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem 25(7):1331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rabuka D, Rush JS, deHart GW, Wu P, Bertozzi CR (2012) Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat Protoc 7(6):1052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH, Kazane SA, Halder R, Forsyth JS, Santidrian AF, Stafin K, Lu Y, Tran H, Seller AJ, Biroc SL, Szydlik A, Pinkstaff JK, Tian F, Sinha SC, Felding-Habermann B, Smider VV, Schultz PG (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci 109(40):16101–16106

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yin G, Stephenson HT, Yang J, Li X, Armstrong SM, Heibeck TH, Tran C, Masikat MR, Zhou S, Stafford RL, Yam AY, Lee J, Steiner AR, Gill A, Penta K, Pollitt S, Baliga R, Murray CJ, Thanos CD, McEvoy LM, Sato AK, Hallam TJ (2017) RF1 attenuation enables efficient non-natural amino acid incorporation for production of homogeneous antibody drug conjugates. Sci Rep 7(1):3026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. VanBrunt MP, Shanebeck K, Caldwell Z, Johnson J, Thompson P, Martin T, Dong H, Li G, Xu H, D’Hooge F, Masterson L, Bariola P, Tiberghien A, Ezeadi E, Williams DG, Hartley JA, Howard PW, Grabstein KH, Bowen MA, Marelli M (2015) Genetically encoded azide containing amino acid in mammalian cells enables site-specific antibody-drug conjugates using click cycloaddition chemistry. Bioconjug Chem 26:2249

    Article  PubMed  CAS  Google Scholar 

  53. Li X, Nelson CG, Nair RR, Hazlehurst L, Moroni T, Martinez-Acedo P, Nanna AR, Hymel D, Burke TR, Rader C (2017) Stable and potent selenomab-drug conjugates. Cell Chem Biol 24(4):433–442. e436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Li X, Yang J, Rader C (2014) Antibody conjugation via one and two C-terminal selenocysteines. Methods 65(1):133–138

    Article  PubMed  CAS  Google Scholar 

  55. Okeley NM, Toki BE, Zhang X, Jeffrey SC, Burke PJ, Alley SC, Senter PD (2013) Metabolic engineering of monoclonal antibody carbohydrates for antibody–drug conjugation. Bioconjug Chem 24(10):1650–1655

    Article  PubMed  CAS  Google Scholar 

  56. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, Lu Y, Meng YG, Ng C, Yang J, Lee CC, Duenas E, Gorrell J, Katta V, Kim A, McDorman K, Flagella K, Venook R, Ross S, Spencer SD, Lee Wong W, Lowman HB, Vandlen R, Sliwkowski MX, Scheller RH, Polakis P, Mallet W (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotech 26(8):925–932

    Article  CAS  Google Scholar 

  57. Dorywalska M, Strop P, Melton-Witt JA, Hasa-Moreno A, Farias SE, Galindo Casas M, Delaria K, Lui V, Poulsen K, Loo C, Krimm S, Bolton G, Moine L, Dushin R, Tran TT, Liu SH, Rickert M, Foletti D, Shelton DL, Pons J, Rajpal A (2015) Effect of attachment site on stability of cleavable antibody drug conjugates. Bioconjug Chem 26(4):650–659

    Article  PubMed  CAS  Google Scholar 

  58. Jackson D, Atkinson J, Guevara CI, Zhang C, Kery V, Moon S-J, Virata C, Yang P, Lowe C, Pinkstaff J, Cho H, Knudsen N, Manibusan A, Tian F, Sun Y, Lu Y, Sellers A, Jia X-C, Joseph I, Anand B, Morrison K, Pereira DS, Stover D (2014) In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates. PLoS One 9(1):e83865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Strop P, Delaria K, Foletti D, Witt JM, Hasa-Moreno A, Poulsen K, Casas MG, Dorywalska M, Farias S, Pios A, Lui V, Dushin R, Zhou D, Navaratnam T, Tran T-T, Sutton J, Lindquist KC, Han B, Liu S-H, Shelton DL, Pons J, Rajpal A (2015) Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat Biotech 33(7):694–696

    Article  CAS  Google Scholar 

  60. Müller-Späth T, Ulmer N, Aumann L, Kennedy C, Bavand M (2015) Twin-column cation-exchange chromatography for the purification of biomolecules. BioPharm Int 28(4):32–36

    Google Scholar 

  61. Lyons A, King DJ, Owens RJ, Yarranton GT, Millican A, Whittle NR, Adair JR (1990) Site-specific attachment to recombinant antibodies via introduced surface cysteine residues. Protein Eng Des Sel 3:703

    Article  CAS  Google Scholar 

  62. Stimmel JB, Merrill BM, Kuyper LF, Moxham CP, Hutchins JT, Fling ME, Kull FC (2000) Site-specific conjugation on serine right-arrow cysteine variant monoclonal antibodies. J Biol Chem 275:30445

    Article  PubMed  CAS  Google Scholar 

  63. Zhong X, He T, Prashad AS, Wang W, Cohen J, Ferguson D, Tam AS, Sousa E, Lin L, Tchistiakova L, Gatto S, D’Antona A, Luan Y-T, Ma W, Zollner R, Zhou J, Arve B, Somers W, Kriz R (2017) Mechanistic understanding of the cysteine capping modifications of antibodies enables selective chemical engineering in live mammalian cells. J Biotechnol 248(Supplement C):48–58

    Article  PubMed  CAS  Google Scholar 

  64. Rudra-Ganguly N, Lowe C, Virata C, Leavitt M, Jin L, Mendelsohn B, Snyder J, Aviña H, Zhang C, Russell DL, Mattie M, Yang P, Randhawa B, Liu G, Malik F, Vest M, Abad JD, Kemball CC, Hubert R, Karki S, Anand B, An Z, Grant J, Dick JE, Doñate F, Morrison K, Challita-Eid P, Joseph IB, Pereira DS, Stover DR (2015) AGS62P1, a novel anti-FLT3 antibody drug conjugate, employing site specific conjugation, demonstrates preclinical anti-tumor efficacy in AML tumor and patient derived xenografts. Blood 126(23):3806–3806

    Google Scholar 

  65. Rickert M, Strop P, Lui V, Melton-Witt J, Farias SE, Foletti D, Shelton D, Pons J, Rajpal A (2016) Production of soluble and active microbial transglutaminase in Escherichia coli for site-specific antibody drug conjugation. Protein Sci 25(2):442–455

    Article  PubMed  CAS  Google Scholar 

  66. Chen L, Cohen J, Song X, Zhao A, Ye Z, Feulner CJ, Doonan P, Somers W, Lin L, Chen PR (2016) Improved variants of SrtA for site-specific conjugation on antibodies and proteins with high efficiency. Sci Rep 6:31899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, Jonas M, Anderson ME, Setter JR, Senter PD (2015) Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotech 33(7):733–735

    Article  CAS  Google Scholar 

  68. Kalia J, Raines RT (2007) Catalysis of imido group hydrolysis in a maleimide conjugate. Bioorg Med Chem Lett 17(22):6286–6289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Tumey LN, Charati M, He T, Sousa E, Ma D, Han X, Clark T, Casavant J, Loganzo F, Barletta F, Lucas J, Graziani EI (2014) Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure, and efficacy. Bioconjug Chem 25:1871

    Article  PubMed  CAS  Google Scholar 

  70. Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV (2015) Long-term stabilization of maleimide-thiol conjugates. Bioconjug Chem 26:145

    Article  PubMed  CAS  Google Scholar 

  71. Lyon RP, Setter JR, Bovee TD, Doronina SO, Hunter JH, Anderson ME, Balasubramanian CL, Duniho SM, Leiske CI, Li F, Senter PD (2014) Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol 32:1059

    Article  PubMed  CAS  Google Scholar 

  72. Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, Parsons-Reponte KL, Tien J, Yu SF, Mai E, Li D, Tibbitts J, Baudys J, Saad OM, Scales SJ, McDonald PJ, Hass PE, Eigenbrot C, Nguyen T, Solis WA, Fuji RN, Flagella KM, Patel D, Spencer SD, Khawli LA, Ebens A, Wong WL, Vandlen R, Kaur S, Sliwkowski MX, Scheller RH, Polakis P, Junutula JR (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30:184

    Article  PubMed  CAS  Google Scholar 

  73. Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ, Senter PD (2008) Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 19(3):759–765

    Article  PubMed  CAS  Google Scholar 

  74. Badescu G, Bryant P, Swierkosz J, Khayrzad F, Pawlisz E, Farys M, Cong Y, Muroni M, Rumpf N, Brocchini S, Godwin A (2014) A new reagent for stable thiol-specific conjugation. Bioconjug Chem 25(3):460–469

    Article  PubMed  CAS  Google Scholar 

  75. Toda N, Asano S, Barbas CF (2013) Rapid, stable, chemoselective labeling of thiols with Julia–Kocieński-like reagents: a serum-stable alternative to maleimide-based protein conjugation. Angew Chem Int Ed 52(48):12592–12596

    Article  CAS  Google Scholar 

  76. Bernardim B, Cal PMSD, Matos MJ, Oliveira BL, Martínez-Sáez N, Albuquerque IS, Perkins E, Corzana F, Burtoloso ACB, Jiménez-Osés G, Bernardes GJL (2016) Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nat Commun 7:13128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chari RVJ, Martell BA, Gross JL, Cook SB, Shah SA, Blättler WA, McKenzie SJ, Goldmacher VS (1992) Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res 52(1):127–131

    PubMed  CAS  Google Scholar 

  78. Hamblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10(20):7063–7070

    Article  PubMed  CAS  Google Scholar 

  79. Maruani A, Richards DA, Chudasama V (2016) Dual modification of biomolecules. Org Biomol Chem 14(26):6165–6178

    Article  PubMed  CAS  Google Scholar 

  80. Levengood MR, Zhang X, Hunter JH, Emmerton KK, Miyamoto JB, Lewis TS, Senter PD (2017) Orthogonal cysteine protection enables homogeneous multi-drug antibody–drug conjugates. Angew Chem Int Ed 56(3):733–737

    Article  CAS  Google Scholar 

  81. Ariyasu S, Hayashi H, Xing B, Chiba S (2017) Site-specific dual functionalization of cysteine residue in peptides and proteins with 2-azidoacrylates. Bioconjug Chem 28(4):897–902

    Article  PubMed  CAS  Google Scholar 

  82. Maruani A, Smith MEB, Miranda E, Chester KA, Chudasama V, Caddick S (2015) A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun 6:6645

    Article  PubMed  CAS  Google Scholar 

  83. Li X, Patterson JT, Sarkar M, Pedzisa L, Kodadek T, Roush WR, Rader C (2015) Site-specific dual antibody conjugation via engineered cysteine and selenocysteine residues. Bioconjug Chem 26(11):2243–2248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Tang F, Yang Y, Tang Y, Tang S, Yang L, Sun B, Jiang B, Dong J, Liu H, Huang M, Geng M-Y, Huang W (2016) One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody-drug conjugates. Org Biomol Chem 14(40):9501–9518

    Article  PubMed  CAS  Google Scholar 

  85. Yurkovetskiy AV, Yin M, Bodyak N, Stevenson CA, Thomas JD, Hammond CE, Qin L, Zhu B, Gumerov DR, Ter-Ovanesyan E, Uttard A, Lowinger TB (2015) A polymer-based antibody–vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res 75(16):3365–3372

    Article  PubMed  CAS  Google Scholar 

  86. Burke PJ, Hamilton JZ, Pires TA, Setter JR, Hunter JH, Cochran JH, Waight AB, Gordon KA, Toki BE, Emmerton KK, Zeng W, Stone IJ, Senter PD, Lyon RP, Jeffrey SC (2016) Development of novel quaternary ammonium linkers for antibody–drug conjugates. Mol Cancer Ther 15:938

    Article  PubMed  CAS  Google Scholar 

  87. Pillow TH (2017) Novel linkers and connections for antibody–drug conjugates to treat cancer and infectious disease. Pharm Patent Anal 6(1):25–33

    Article  CAS  Google Scholar 

  88. Jeffrey SC, Andreyka JB, Bernhardt SX, Kissler KM, Kline T, Lenox JS, Moser RF, Nguyen MT, Okeley NM, Stone IJ, Zhang X, Senter PD (2006) Development and properties of β-glucuronide linkers for monoclonal antibody−drug conjugates. Bioconjug Chem 17(3):831–840

    Article  PubMed  CAS  Google Scholar 

  89. Zhao RY, Wilhelm SD, Audette C, Jones G, Leece BA, Lazar AC, Goldmacher VS, Singh R, Kovtun Y, Widdison WC, Lambert JM, Chari RVJ (2011) Synthesis and evaluation of hydrophilic linkers for antibody–maytansinoid conjugates. J Med Chem 54(10):3606–3623

    Article  PubMed  CAS  Google Scholar 

  90. Kern JC, Cancilla M, Dooney D, Kwasnjuk K, Zhang R, Beaumont M, Figueroa I, Hsieh S, Liang L, Tomazela D, Zhang J, Brandish PE, Palmieri A, Stivers P, Cheng M, Feng G, Geda P, Shah S, Beck A, Bresson D, Firdos J, Gately D, Knudsen N, Manibusan A, Schultz PG, Sun Y, Garbaccio RM (2016) Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates. J Am Chem Soc 138(4):1430–1445

    Article  PubMed  CAS  Google Scholar 

  91. Mendelsohn BA, Barnscher SD, Snyder JT, An Z, Dodd JM, Dugal-Tessier J (2017) Investigation of hydrophilic auristatin derivatives for use in antibody drug conjugates. Bioconjug Chem 28(2):371–381

    Article  PubMed  CAS  Google Scholar 

  92. Buck PM, Kumar S, Wang X, Agrawal NJ, Trout BL, Singh SK (2012) Computational methods to predict therapeutic protein aggregation. Methods Mol Biol 899:425

    Article  PubMed  CAS  Google Scholar 

  93. Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y, Cao Y, Lynaugh H, Brown M, Baruah H, Gray LT, Krauland EM, Xu Y, Vásquez M, Wittrup KD (2017) Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci 114(5):944–949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lee CC, Perchiacca JM, Tessier PM (2013) Toward aggregation-resistant antibodies by design. Trends Biotechnol 31(11):612–620

    Article  PubMed  CAS  Google Scholar 

  95. Sharma VK, Patapoff TW, Kabakoff B, Pai S, Hilario E, Zhang B, Li C, Borisov O, Kelley RF, Chorny I, Zhou JZ, Dill KA, Swartz TE (2014) In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc Natl Acad Sci 111(52):18601–18606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Tomar DS, Kumar S, Singh SK, Goswami S, Li L (2016) Molecular basis of high viscosity in concentrated antibody solutions: strategies for high concentration drug product development. MAbs 8(2):216–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Beckley NS, Lazzareschi KP, Chih H-W, Sharma VK, Flores HL (2013) Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjug Chem 24(10):1674–1683

    Article  PubMed  CAS  Google Scholar 

  98. Guo J, Kumar S, Prashad A, Starkey J, Singh SK (2014) Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of thiol- maleimide chemistry. Pharm Res 31(7):1710–1723

    Article  PubMed  CAS  Google Scholar 

  99. Li W, Prabakaran P, Chen W, Zhu Z, Feng Y, Dimitrov D (2016) Antibody aggregation: insights from sequence and structure. Antibodies 5(3):19

    Article  CAS  PubMed Central  Google Scholar 

  100. Voynov V, Chennamsetty N, Kayser V, Wallny HJ, Helk B, Trout BL (2010) Design and application of antibody cysteine variants. Bioconjug Chem 21:385

    Article  PubMed  CAS  Google Scholar 

  101. Tumey LN, Li F, Rago B, Han X, Loganzo F, Musto S, Graziani EI, Puthenveetil S, Casavant J, Marquette K, Clark T, Bikker J, Bennett EM, Barletta F, Piche-Nicholas N, Tam A, O’Donnell CJ, Gerber HP, Tchistiakova L (2017) Site selection: a case study in the identification of optimal cysteine engineered antibody drug conjugates. AAPS J 19(4):1123–1135

    Article  PubMed  CAS  Google Scholar 

  102. Tiller KE, Tessier PM (2015) Advances in antibody design. Annu Rev Biomed Eng 17(1):191–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Polu KR, Lowman HB (2014) Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin Biol Ther 14(8):1049–1053

    Article  PubMed  CAS  Google Scholar 

  104. Marshall DJ, Harried SS, Murphy JL, Hall CA, Shekhani MS, Pain C, Lyons CA, Chillemi A, Malavasi F, Pearce HL, Thorson JS, Prudent JR (2016) Extracellular antibody drug conjugates exploiting the proximity of two proteins. Mol Ther 24(10):1760–1770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Brinkmann U, Kontermann RE (2017) The making of bispecific antibodies. MAbs 9(2):182–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Sheridan C (2016) Despite slow progress, bispecifics generate buzz. Nat Biotechnol 34:1215

    Article  PubMed  CAS  Google Scholar 

  107. Metz S, Haas AK, Daub K, Croasdale R, Stracke J, Lau W, Georges G, Josel H-P, Dziadek S, Hopfner K-P, Lammens A, Scheuer W, Hoffmann E, Mundigl O, Brinkmann U (2011) Bispecific digoxigenin-binding antibodies for targeted payload delivery. Proc Natl Acad Sci 108(20):8194–8199

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rossi EA, Goldenberg DM, Chang C-H (2012) The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 23(3):309–323

    Article  PubMed  CAS  Google Scholar 

  109. Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, Hinrichs MJ, Bezabeh BZ, Fleming RL, Dimasi N, Feng H, Toader D, Yuan AQ, Xu L, Lin J, Gao C, Wu H, Dixit R, Osbourn JK, Coats SR (2016) A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 29:117

    Article  PubMed  CAS  Google Scholar 

  110. Trail PA, Dubowchik GM, Lowinger TB (2018) Antibody drug conjugates for treatment of breast cancer: novel targets and diverse approaches in ADC design. Pharmacol Therap 181:126–142

    Article  CAS  Google Scholar 

  111. de Goeij BECG, Vink T, ten Napel H, Breij ECW, Satijn D, Wubbolts R, Miao D, Parren PWHI (2016) Efficient payload delivery by a bispecific antibody–drug conjugate targeting HER2 and CD63. Mol Cancer Ther 15(11):2688–2697

    Article  PubMed  Google Scholar 

  112. de Goeij BECG, Satijn D, Freitag CM, Wubbolts R, Bleeker WK, Khasanov A, Zhu T, Chen G, Miao D, van Berkel PHC, Parren PWHI (2015) High turnover of tissue factor enables efficient intracellular delivery of antibody–drug conjugates. Mol Cancer Ther 14(5):1130–1140

    Article  PubMed  CAS  Google Scholar 

  113. Andreev J, Thambi N, Perez Bay AE, Delfino F, Martin J, Kelly MP, Kirshner JR, Rafique A, Kunz A, Nittoli T, MacDonald D, Daly C, Olson W, Thurston G (2017) Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther 16(4):681–693

    Article  PubMed  CAS  Google Scholar 

  114. DeVay RM, Delaria K, Zhu G, Holz C, Foletti D, Sutton J, Bolton G, Dushin R, Bee C, Pons J, Rajpal A, Liang H, Shelton D, Liu S-H, Strop P (2017) Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug Chem 28(4):1102–1114

    Article  PubMed  CAS  Google Scholar 

  115. Ducry L (2012) Challenges in the development and manufacturing of antibody–drug conjugates. In: Voynov V, Caravella JA (eds) Therapeutic proteins: methods and protocols. Humana Press, Totowa, pp 489–497

    Chapter  Google Scholar 

  116. Rohrer T (2012) Consideration for the safe and effective manufacturing of antibody drug conjugates. Chim Oggi 30(5):76

    CAS  Google Scholar 

  117. Denk R, Flückiger A (2017) ADCs: Anforderungen an GMP und Arbeitsschutz. TechnoPharm 7(1):32–37

    Google Scholar 

  118. Ducry L, Suhartono M, Rohrer T (2016) Manufacturing ADCs utilizing full-disposable system. World ADC Summit, Berlin, Hanson Wade

    Google Scholar 

  119. Stanton D (2014) ADC pipelines drive single-use expansion at Lonza’s clinical facility. 2017

    Google Scholar 

  120. Han T (2017) Utilize disposable technologies for ADC manufacture. World ADC Summit, Berlin, Hanson Wade

    Google Scholar 

  121. Boedeker B, Jones Seymor K (2015) A single-use ADC process: from development to clinical. World ADC Summit, San Diego, Hanson Wade

    Google Scholar 

  122. Czapkowski B, Steen J, Bortell E, Patel V, Seo YS, Jiang J, Lagliva J, Di Grandi D, Kozlov M (2017) Trial of high efficiency TFF capsule prototype for ADC purification. ADC Rev J Antibody-Drug Conjug. https://doi.org/10.14229/jadc.2017.11.04.001

  123. Dunny E, O’Connor I, Bones J (2017) Containment challenges in HPAPI manufacture for ADC generation. Drug Discov Today 22(6):947–951

    Article  PubMed  CAS  Google Scholar 

  124. ISPE Baseline Guide: Volume 7 – Risk-based manufacture of pharmaceutical products (Risk-MaPP). International Society for Pharmaceutical Engineering (2017)

    Google Scholar 

  125. Hensgen MI, Stump B (2013) Safe handling of cytotoxic compounds in a biopharmaceutical environment. In: Ducry L (ed) Antibody-drug conjugates. Humana Press, Totowa, pp 133–143

    Chapter  Google Scholar 

  126. Marcq O (2017) Robustly outsource and transfer ADC technology. World ADC Summit, Berlin, Hanson Wade

    Google Scholar 

  127. Marcq O (2017) ADC safety and toxicity: technology choices and importance of process development to control safety related CQAs. In: 5th antibody industrial symposium, Tours

    Google Scholar 

  128. Turula V (2016) Manufacturing support for antibody drug conjugates: clinical and commercial scenarios. World ADC Summit, Berlin, Hanson Wade

    Google Scholar 

  129. Krummen L (2013) Lessons learned from two case studies in the FDA QbD biotech pilot. CMC Forum Europe, Prague

    Google Scholar 

  130. Galush WJ, Wakankar AA (2013) Formulation development of antibody–drug conjugates. In: Ducry L (ed) Antibody-drug conjugates. Humana Press, Totowa, pp 217–233

    Chapter  Google Scholar 

  131. Roberts SA, Andrews PA, Blanset D, Flagella KM, Gorovits B, Lynch CM, Martin PL, Kramer-Stickland K, Thibault S, Warner G (2013) Considerations for the nonclinical safety evaluation of antibody drug conjugates for oncology. Regul Toxicol Pharmacol 67(3):382–391

    Article  PubMed  CAS  Google Scholar 

  132. Hinrichs MJM, Dixit R (2015) Antibody drug conjugates: nonclinical safety considerations. AAPS J 17(5):1055–1064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Kumar S, King LE, Clark TH, Gorovits B (2015) Antibody–drug conjugates nonclinical support: from early to late nonclinical bioanalysis using ligand-binding assays. Bioanalysis 7(13):1605–1617

    Article  PubMed  CAS  Google Scholar 

  134. Brachet G, Respaud R, Arnoult C, Henriquet C, Dhommee C, Viaud-Massuard MC, Heuze-Vourc’h N, Joubert N, Pugniere M, Gouilleux-Gruart V (2016) Increment in drug loading on an antibody-drug conjugate increases its binding to the human neonatal Fc receptor in vitro. Mol Pharm 13:1405

    Article  PubMed  CAS  Google Scholar 

  135. ICH (2009) S9 Nonclinical evaluation for anticancer pharmaceuticals. http://www.ich.org/products/guidelines/safety/safety-single/article/nonclinical-evaluation-for-anticancer-pharmaceuticals.html

  136. Kelley B, Cromwell M, Jerkins J (2016) Integration of QbD risk assessment tools and overall risk management. Biologicals 44(5):341–351

    Article  PubMed  Google Scholar 

  137. Lacoste E (2016) Optimization of ADC process development. World ADC Summit, Berlin, Hanson Wade

    Google Scholar 

  138. Nilapwar S (2016) Development of robust, scalable site-specific conjugation for monoclonal and bispecific mAbs: a DOE approach. World ADC Summit, San Diego, Hanson Wade

    Google Scholar 

  139. Agten SM, Dawson PE, Hackeng TM (2016) Oxime conjugation in protein chemistry: from carbonyl incorporation to nucleophilic catalysis. J Pept Sci 22(5):271–279

    Article  PubMed  CAS  Google Scholar 

  140. Rashidian M, Mahmoodi MM, Shah R, Dozier JK, Wagner CR, Distefano MD (2013) A highly efficient catalyst for oxime ligation and hydrazone–oxime exchange suitable for bioconjugation. Bioconjug Chem 24(3):333–342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Botzanowski T, Erb S, Hernandez-Alba O, Ehkirch A, Colas O, Wagner-Rousset E, Rabuka D, Beck A, Drake PM, Cianférani S (2017) Insights from native mass spectrometry approaches for top- and middle- level characterization of site-specific antibody-drug conjugates. MAbs 9(5):801–811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Pan LY, Salas-Solano O, Valliere-Douglass JF (2014) Conformation and dynamics of interchain cysteine-linked antibody-drug conjugates as revealed by hydrogen/deuterium exchange mass spectrometry. Anal Chem 86(5):2657–2664

    Article  PubMed  CAS  Google Scholar 

  143. Chizkov RR, Million RP (2015) Trends in breakthrough therapy designation. Nat Rev Drug Discov 14(9):597

    Article  PubMed  CAS  Google Scholar 

  144. Shea M, Ostermann L, Hohman R, Roberts S, Kozak M, Dull R, Allen J, Sigal E (2016) Impact of breakthrough therapy designation on cancer drug development. Nat Rev Drug Discov 15:152

    Article  PubMed  CAS  Google Scholar 

  145. Dye E, Sturgess A, Maheshwari G, May K, Ruegger C, Ramesh U, Tan H, Cockerill K, Groskoph J, Lacana E, Lee S, Miksinski SP (2016) Examining manufacturing readiness for breakthrough drug development. AAPS PharmSciTech 17(3):529–538

    Article  PubMed  Google Scholar 

  146. Dye ES, Groskoph J, Kelley B, Millili G, Nasr M, Potter CJ, Thostesen E, Vermeersch H (2015) CMC considerations when a drug development project is assigned breakthrough therapy status. Pharm Eng 35(1):1–11

    Google Scholar 

  147. Jacobson F (2016) Antibody drug conjugates – introduction to a new EBE initiative. CMC Strategy Forum – EBE Satellite Session. Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Marcq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marcq, O. (2018). Outlook on Next Generation Technologies and Strategy Considerations for ADC Process Development and Manufacturing. In: Damelin, M. (eds) Innovations for Next-Generation Antibody-Drug Conjugates. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78154-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78154-9_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78153-2

  • Online ISBN: 978-3-319-78154-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics