Skip to main content

Ocean Acidification

  • Chapter
  • First Online:
Handbook on Marine Environment Protection

Abstract

Roughly one third of anthropogenically emitted CO2 has been taken up by the oceans. When this CO2 combines with water to form H2CO3, a weak acid, water acidity increases in a process referred to as ocean acidification (OA). From the preindustrial era until present time the average pH has decreased by 0.08 units on average and it is projected to decrease a further 0.15 to 0.50 until year 2100 (IPCC RCP2.6 and RCP8.5 projections). Increased acidity hampers calcification in shell forming invertebrates, but OA also acts on a wider range of physiological processes, especially those related to cellular ion regulation, and most often non-calcifying species are equally affected. Meta-analyses show severe effects on many species of corals, echinoderms, molluscs, crustaceans, and fish at levels predicted for year 2100. Nevertheless, generalizations are presently hampered by our lack of knowledge on the variability of effects among life cycle stages, variability among taxa, how evolutionary adaptation and transgenerational effects may alleviate OA effects, and effects of OA on entire communities. Even closely related species react differently, and differences among populations of the same species separated geographically have been recorded. Also, specific life cycle stages seem to be more sensitive. In general, planktonic larvae and juveniles seem more affected than adults. Knowledge on evolutionary adaptation to OA is scarce, but the few studies that do exist indicate possible fast adaptation and buffering of OA effects by transgenerational exposure. Studies show that future OA may shift the biodiversity of entire communities. Two marine communities are of particular concern. Model studies indicate that coral reefs could be pushed beyond sustainability be the end of the century, and OA is progressing fast in the Arctic where many species are physiologically lesser capable of countering OA. OA works in concert with many other environmental stressors and knowledge on OA should be incorporated into decisions on suitable areas to protect so as to minimise effects of other stressors in habitats most vulnerable to OA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albright R, Caldeira L, Hosfelt J, Kwiatkowski L, Maclaren JK, Mason BM, Nebuchina Y, Ninokawa A, Pongratz J, Ricke KL, Rivlin T, Schneider K, Sesboüé M, Shamberger K, Silverman J, Wolfe K, Zhu K, Caldeira K (2016) Reversal of ocean acidification enhances net coral reef calcification. Nature 531:362–365

    Article  CAS  Google Scholar 

  • AMAP (2013) AMAP assessment 2013: Arctic Ocean acidification. Arctic Monitoring and Assessment Programme (AMAP), Oslo

    Google Scholar 

  • Bailey A, Thor P, Browman HI, Fields DM, Runge J, Vermont A, Bjelland R, Thompson C, Shema S, Durif CMF, Hop H (2016) Early life stages of the Arctic copepod Calanus glacialis are unaffected by increased seawater pCO2. ICES J Mar Sci 74:996–1004

    Google Scholar 

  • Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North Sea. Nature 426:661–664

    Google Scholar 

  • Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Øxnevad S (2006) Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere 62:681–687

    Article  CAS  Google Scholar 

  • Browman HI (2016) Applying organized scepticism to ocean acidification research. ICES J Mar Sci 73:529–536

    Article  Google Scholar 

  • Brussaard CPD, Noordeloos AAM, Witte H, Collenteur MCJ, Schulz K, Ludwig A, Riebesell U (2013) Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences 10:719–731

    Article  Google Scholar 

  • Calosi P, Rastrick SPS, Lombardi C, de Guzman HJ, Davidson L, Jahnke M, Giangrande A, Hardege JÂD, Schulze A, Spicer JI, Gambi MC (2013) Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos Trans R Soc B Biol Sci 368:20120444

    Article  Google Scholar 

  • Castonguay M, Plourde S, Robert D, Runge JA, Fortier L (2008) Copepod production drives recruitment in a marine fish. Can J Fish Aquat Sci 65:1528–1531

    Google Scholar 

  • Chierici M, Fransson A (2009) Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves. Biogeosciences 6:2421–2432

    Article  CAS  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2014) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) The physical Science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • De Wit P, Dupont S, Thor P (2016) Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol Appl 9:1112–1123

    Google Scholar 

  • Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Duffy JE, Stachowich JJ (2006) Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in pelagic ecosystem processes. Mar Ecol Prog Ser 311:179–189

    Article  Google Scholar 

  • Dupont S, Dorey N, Thorndyke M (2010) What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar Coast Shelf Sci 89:182–185

    Article  Google Scholar 

  • Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2013) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 160:1835–1843

    Article  CAS  Google Scholar 

  • Dutkiewicz S, Morris JJ, Follows MJ, Scott J, Levitan O, Dyhrman ST, Berman-Frank I (2015) Impact of ocean acidification on the structure of future phytoplankton communities. Nat Clim Change 5:1002–1006

    Article  CAS  Google Scholar 

  • Engel A, Borchard C, Piontek J, Schulz KG, Riebesell U, Bellerby R (2013) CO2 increases 14C primary production in an Arctic plankton community. Biogeosciences 10:1291–1308

    Article  CAS  Google Scholar 

  • Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high latitudes: the bellweather. Oceanography 22:160–171

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  CAS  Google Scholar 

  • Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt Ö, Chivers DP (2011) Putting prey and predator into the CO2 equation – qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecol Lett 14:1143–1148

    Article  Google Scholar 

  • Fitzer SC, Caldwell GS, Close AJ, Clare AS, Upstill-Goddard RC, Bentley MG (2012) Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. J Exp Mar Biol Ecol 418–419:30–36

    Article  Google Scholar 

  • Fransson A, Chierici M, Anderson LG, Bussmann I, Kattner G, Peter Jones E, Swift JH (2001) The importance of shelf processes for the modification of chemical constituents in the waters of the Eurasian Arctic Ocean: implication for carbon fluxes. Cont Shelf Res 21:225–242

    Article  Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso JP, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603

    Article  Google Scholar 

  • Hendriks IE, Duarte CM, Álvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar Coast Shelf Sci 86:157–164

    Article  CAS  Google Scholar 

  • Hildebrandt N, Sartoris FJ, Schulz KG, Riebesell U, Niehoff B (2016) Ocean acidification does not alter grazing in the calanoid copepods Calanus finmarchicus and Calanus glacialis. ICES J Mar Sci 73:927–936

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6:11

    Google Scholar 

  • Jokiel PL (2016) Predicting the impact of ocean acidification on coral reefs: evaluating the assumptions involved. ICES J Mar Sci 73:550–557

    Article  Google Scholar 

  • Khatiwala S, Tanhua T, Fletcher SM, Gerber M, Doney SC, Graven HD, Gruber N, McKinley GA, Murata A, Rios AF, Sabine CL (2013) Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–2191

    Article  CAS  Google Scholar 

  • de Kluijver A, Soetaert K, Czerny J, Schulz KG, Boxhammer T, Riebesell U, Middelburg JJ (2013) A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels. Biogeosciences 10:1425–1440

    Article  Google Scholar 

  • Last JM (1980) The food of twenty species of fish larvae in the west-central North Sea. Ministry of Agriculture, Fisheries and Food, Lowestoft (UK)

    Google Scholar 

  • Leu E, Daase M, Schulz KG, Stuhr A, Riebesell U (2013) Effect of ocean acidification on the fatty acid composition of a natural plankton community. Biogeosciences 10:1143–1153

    Article  Google Scholar 

  • Lewis CN, Brown KA, Edwards LA, Cooper G, Findlay HS (2013) Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proc Natl Acad Sci U S A 110:E4960–E4967

    Article  CAS  Google Scholar 

  • Maneja RH, Frommel AY, Browman HI, Geffen AJ, Folkvord A, Piatkowski U, Durif CMF, Bjelland R, Skiftesvik AB, Clemmesen C (2015) The swimming kinematics and foraging behavior of larval Atlantic herring (Clupea harengus L.) are unaffected by elevated pCO2. J Exp Mar Biol Ecol 466:42–48

    Article  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    Article  CAS  Google Scholar 

  • Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118

    Article  Google Scholar 

  • Miller GM, Watson SA, Donelson JM, McCormick MI, Munday PL (2012) Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat Clim Change 2:858–861

    Article  CAS  Google Scholar 

  • Möllmann C, Kornilovs G, Fetter M, Koster FW, Hinrichsen HH (2003) The marine copepod, Pseudocalanus elongatus, as a mediator between climate variability and fisheries in the Central Baltic Sea. Fish Oceanogr 12:360–368

    Google Scholar 

  • Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci U S A 106:1848–1852

    Article  CAS  Google Scholar 

  • Niehoff B, Schmithüsen T, Knüppel N, Daase M, Czerny J, Boxhammer T (2013) Mesozooplankton community development at elevated CO2 concentrations: results from a mesocosm experiment in an Arctic fjord. Biogeosciences 10:1391–1406

    Article  Google Scholar 

  • Oelkers EH, Cole DR (2008) Carbon dioxide sequestration: a solution to a global problem. Elements 4:305–310

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005a) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Orr JC, Pantoja S, Pörtner H-O (2005b) Introduction to special section: the ocean in a high-CO2 world. J Geophys Res Oceans 110

    Google Scholar 

  • Parker LM, O’Connor WA, Raftos DA, Pörtner H-O, Ross PM (2015) Persistence of positive carryover effects in the oyster, Saccostrea glomerata, following transgenerational exposure to ocean acidification. PLoS One 10:e0132276

    Article  Google Scholar 

  • Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD, Jaris HK, LaVigne M, Lenz EA, Russell AD, Young MK, Palumbi SR (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci U S A 110:6937–6942

    Article  CAS  Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  • Pörtner H-O (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893

    Article  Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718

    Article  Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci U S A 104:10288–10293

    Article  CAS  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagés C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol 9:1660–1668

    Article  Google Scholar 

  • Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev GC, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: ocean. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Ricke KL, Orr JC, Schneider K, Caldeira K (2013) Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections. Environ Res Lett 8:034003

    Article  Google Scholar 

  • Riebesell U, Gattuso JP, Thingstad TF, Middelburg JJ (2013) Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study—preface. Biogeosciences 10:5619–5626

    Article  Google Scholar 

  • Runge JA, Castonguay M, De LaFontaine Y, Ringuette M, Beaulieu JL (1999) Covariation in climate, zooplankton biomass and mackerel recruitment in the southern Gulf of St Lawrence. Fish Oceanogr 8:139–149

    Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL et al (2004) The oceanic sink for CO2. Science 305:367–371

    Article  CAS  Google Scholar 

  • Schalkhausser B, Bock C, Stemmer K, Brey T, Pörtner H-O, Lannig G (2012) Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway. Mar Biol 160:1995–2006

    Article  Google Scholar 

  • Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36

    Google Scholar 

  • Stumpp M, Hu M, Casties I, Saborowski R, Bleich M, Melzner F, Dupont S (2013) Digestion in sea urchin larvae impaired under ocean acidification. Nat Clim Change 3:1044–1049

    Article  CAS  Google Scholar 

  • Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH (2014) Evolution in an acidifying ocean. Trends Ecol Evol 29:117–125

    Article  Google Scholar 

  • Taylor JRA, Gilleard JM, Allen MC, Deheyn DD (2015) Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Sci Rep 5:10608

    Article  CAS  Google Scholar 

  • Taylor LL, Quirk J, Thorley RMS, Kharecha PA, Hansen J, Ridgwell A, Lomas MR, Banwart SA, Beerling DJ (2016) Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat Clim Change 6:402

    Article  CAS  Google Scholar 

  • Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob Change Biol. doi:10.1111/gcb.12815

  • Thor P, Oliva EO (2015) Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes. Mar Biol 162:799–807

    Article  CAS  Google Scholar 

  • Thor P, Bailey A, Dupont S, Calosi P, Søreide JE, De Wit P, Gushelli E, Loubet-Sartrou L, Deichmann I, Candee M, Svensen C, King AL, Bellerby R (2017) Contrasting physiological response to future ocean acidification among Arctic copepod population. Global Change Biology DOI: 10.1111/gcb.13870

  • Walther K, Anger K, Pörtner HO (2010) Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar Ecol Prog Ser 417:159–170

    Article  Google Scholar 

  • Weaver AJ, Zickfeld K, Montenegro A, Eby M (2007) Long term climate implications of 2050 emission reduction targets. Geophys Res Lett 34:L19703

    Article  Google Scholar 

  • Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271

    Google Scholar 

  • Wittmann AC, Pörtner HO (2013) Sensitivities of extant animal taxa to ocean acidification. Nat Clim Change 3:995–1001

    Article  CAS  Google Scholar 

  • Wood HL, Sundell K, Almroth BC, Sköld HN, Eriksson SP (2016) Population-dependent effects of ocean acidification. Proc R Soc Lond B Biol Sci 283. doi:10.1098/rspb.2016.0163

  • Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Thor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Thor, P., Dupont, S. (2018). Ocean Acidification. In: Salomon, M., Markus, T. (eds) Handbook on Marine Environment Protection . Springer, Cham. https://doi.org/10.1007/978-3-319-60156-4_19

Download citation

Publish with us

Policies and ethics