Skip to main content

Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cell Transplantation for Retinal Degeneration

  • Chapter
  • First Online:
Cellular Therapies for Retinal Disease

Abstract

This chapter summarizes the design and outcomes of the first clinical trials of human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cell transplantation therapy for retinal regeneration . The MA09-(hESC) line was derived from the blastomere stage of a donated embryo and expanded on mitotically inactivated mouse embryonic fibroblasts according to the Good Manufacturing Practices. The MA09-hRPE cells were then tested for safety and terminal differentiation into mature RPE cells by gene expression analysis, karyotyping, phagocytosis assay, and differentiation and purity evaluation by way of morphology, quantitative polymerase chain reaction, and quantitative immune staining for RPE and hESC markers. Two phase I/II open-label, multicenter, prospective clinical trials investigating the safety of subretinal injection of hESC-derived RPE cell suspension in patients with end-stage atrophic age-related macular degeneration (AMD) and Stargardt macular dystrophy (SMD) were performed. The visual outcomes were encouraging with some patients gaining more than ten letters in both groups; however, these results must be tempered by the lack of a control group, poor initial visual acuity, short follow-up, and limited number of patients. Thirteen of eighteen patients (72%) developed areas of increased subretinal pigmentation, some of which appeared to correlate to hyper-reflective bands on optical coherence tomography. The transplanted cells showed no evidence of tumor formation, adverse preretinal RPE cell engraftment, or clinically apparent rejection. Aside from a case of acute postoperative endophthalmitis, there were no issues with the surgical procedure itself. These promising results suggest that hESC-derived RPE cells could represent a novel treatment paradigm for retinal degenerations hallmarked by tissue loss or dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72.

    Article  PubMed  Google Scholar 

  2. Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health. 2013;1(6):e339–49.

    Article  PubMed  Google Scholar 

  3. Danis RP, Lavine JA, Domalpally A. Geographic atrophy in patients with advanced dry age-related macular degeneration: current challenges and future prospects. Clin Ophthalmol. 2015;9:2159–74.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bird AC, Phillips RL, Hageman GS. Geographic atrophy: a histopathological assessment. JAMA Ophthalmol. 2014;132(3):338–45.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Holz FG, Bellmann C, Margaritidis M, Schutt F, Otto TP, Volcker HE. Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 1999;237(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  6. Walia S, Fishman GA. Natural history of phenotypic changes in Stargardt macular dystrophy. Ophthalmic Genet. 2009;30(2):63–8.

    Article  PubMed  Google Scholar 

  7. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, et al. A photoreceptor cell-specific ATPbinding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15(3):236–46.

    Article  CAS  PubMed  Google Scholar 

  8. Logan S, Anderson RE. Dominant Stargardt macular dystrophy (STGD3) and ELOVL4. Adv Exp Med Biol. 2014;801:447–53.

    Article  PubMed  Google Scholar 

  9. Atala A. Human stem cell-derived retinal cells for macular diseases. Lancet. 2015;385(9967):487–8.

    Article  PubMed  Google Scholar 

  10. Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP, Gregori G, Penha FM, Moshfeghi AA, et al. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmology. 2014;121(3):693–701.

    Article  PubMed  Google Scholar 

  11. Ma L, Kaufman Y, Zhang J, Washington I. C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease. J Biol Chem. 2011;286(10):7966–74.

    Article  CAS  PubMed  Google Scholar 

  12. Auricchio A, Trapani I, Allikmets R. Gene therapy of ABCA4-associated diseases. Cold Spring Harb Perspect Med. 2015;5(5):a017301.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–81.

    Article  CAS  PubMed  Google Scholar 

  14. Booij JC, van Soest S, Swagemakers SM, Essing AH, Verkerk AJ, van der Spek PJ, et al. Functional annotation of the human retinal pigment epithelium transcriptome. BMC Genomics. 2009;10:164.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sharma RK, Orr WE, Schmitt AD, Johnson DA. A functional profile of gene expression in ARPE-19 cells. BMC Ophthalmol. 2005;5:25.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang XF, Cui JZ, Nie W, Prasad SS, Matsubara JA. Differential gene expression of early and late passage retinal pigment epithelial cells. Exp Eye Res. 2004;79(2):209–21.

    Article  CAS  PubMed  Google Scholar 

  17. Bressler NM, Bressler SB, Hawkins BS, Marsh MJ, Sternberg Jr P, Thomas MA. Submacular surgery trials randomized pilot trial of laser photocoagulation versus surgery for recurrent choroidal neovascularization secondary to age-related macular degeneration: I. Ophthalmic outcomes submacular surgery trials pilot study report number 1. Am J Ophthalmol. 2000;130(4):387–407.

    Article  CAS  PubMed  Google Scholar 

  18. Algvere PV, Berglin L, Gouras P, Sheng Y. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch Clin Exp Ophthalmol. 1994;232(12):707–16.

    Article  CAS  PubMed  Google Scholar 

  19. Algvere PV, Berglin L, Gouras P, Sheng Y, Kopp ED. Transplantation of RPE in age-related macular degeneration: observations in disciform lesions and dry RPE atrophy. Graefes Arch Clin Exp Ophthalmol. 1997;235(3):149–58.

    Article  CAS  PubMed  Google Scholar 

  20. Peyman GA, Blinder KJ, Paris CL, Alturki W, Nelson Jr NC, Desai U. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg. 1991;22(2):102–8.

    CAS  PubMed  Google Scholar 

  21. van Zeeburg EJ, Maaijwee KJ, Missotten TO, Heimann H, van Meurs JC. A free retinal pigment epithelium-choroid graft in patients with exudative age-related macular degeneration: results up to 7 years. Am J Ophthalmol. 2012;153(1):120–7. e2

    Article  PubMed  Google Scholar 

  22. van Zeeburg EJ, Cereda MG, Amarakoon S, van Meurs JC. Prospective, Randomized Intervention Study comparing retinal pigment epithelium-choroid graft surgery and anti-VEGF therapy in patients with exudative age-related macular degeneration. Ophthalmologica. 2015;233(3–4):134–45.

    Article  PubMed  Google Scholar 

  23. Thumann G, Aisenbrey S, Schraermeyer U, Lafaut B, Esser P, Walter P, et al. Transplantation of autologous iris pigment epithelium after removal of choroidal neovascular membranes. Arch Ophthalmol. 2000;118(10):1350–5.

    Article  CAS  PubMed  Google Scholar 

  24. Aisenbrey S, Lafaut BA, Szurman P, Hilgers RD, Esser P, Walter P, et al. Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol. 2006;124(2):183–8.

    Article  PubMed  Google Scholar 

  25. Bharti K, Rao M, Hull SC, Stroncek D, Brooks BP, Feigal E, et al. Developing cellular therapies for retinal degenerative diseases. Invest Ophthalmol Vis Sci. 2014;55(2):1191–202.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Desai N, Rambhia P, Gishto A. Human embryonic stem cell cultivation: historical perspective and evolution of xenofree culture systems. Reprod Biol Endocrinol. 2015;13:9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  28. Vaajasaari H, Ilmarinen T, Juuti-Uusitalo K, Rajala K, Onnela N, Narkilahti S, et al. Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol Vis. 2011;17:558–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  30. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  31. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141–6.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212–5.

    Article  CAS  PubMed  Google Scholar 

  33. Sugita S, Kamao H, Iwasaki Y, Okamoto S, Hashiguchi T, Iseki K, et al. Inhibition of T-cell activation by retinal pigment epithelial cells derived from induced pluripotent stem cells. Invest Ophthalmol Vis Sci. 2015;56(2):1051–62.

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi R, Ishikawa Y, Ito M, Kageyama T, Takashiba K, Fujioka T, et al. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One. 2012;7(9):e45435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471(7336):63–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;27(10):2427–34.

    Article  CAS  PubMed  Google Scholar 

  37. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5(4):396–408.

    Article  CAS  PubMed  Google Scholar 

  38. Zahabi A, Shahbazi E, Ahmadieh H, Hassani SN, Totonchi M, Taei A, et al. A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells. Stem Cells Dev. 2012;21(12):2262–72.

    Article  CAS  PubMed  Google Scholar 

  39. Leach LL, Buchholz DE, Nadar VP, Lowenstein SE, Clegg DO. Canonical/beta-catenin Wnt pathway activation improves retinal pigmented epithelium derivation from human embryonic stem cells. Invest Ophthalmol Vis Sci. 2015;56(2):1002–13.

    Article  CAS  PubMed  Google Scholar 

  40. Croze RH, Buchholz DE, Radeke MJ, Thi WJ, Hu Q, Coffey PJ, et al. ROCK inhibition extends passage of pluripotent stem cell-derived retinal pigmented epithelium. Stem Cells Transl Med. 2014;3(9):1066–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 2004;6(3):217–45.

    Article  CAS  PubMed  Google Scholar 

  42. Tezel TH, Del Priore LV. Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol. 1997;235(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  43. Hynes SR, Lavik EB. A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol. 2010;248(6):763–78.

    Article  PubMed  Google Scholar 

  44. Grulova I, Slovinska L, Blasko J, Devaux S, Wisztorski M, Salzet M, et al. Delivery of alginate scaffold releasing two trophic factors for spinal cord injury repair. Sci Rep. 2015;5:13702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    Article  PubMed  Google Scholar 

  46. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009;27(9):2126–35.

    Article  CAS  PubMed  Google Scholar 

  47. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8(3):189–99.

    Article  CAS  PubMed  Google Scholar 

  48. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20.

    Article  CAS  PubMed  Google Scholar 

  49. Wenkel H, Streilein JW. Evidence that retinal pigment epithelium functions as an immune-privileged tissue. Invest Ophthalmol Vis Sci. 2000;41(11):3467–73.

    CAS  PubMed  Google Scholar 

  50. Xian B, Huang B. The immune response of stem cells in subretinal transplantation. Stem Cell Res Therapy. 2015;6:161.

    Article  Google Scholar 

  51. Zarbin MA, Casaroli-Marano RP, Rosenfeld PJ. Age-related macular degeneration: clinical findings, histopathology and imaging techniques. Dev Ophthalmol. 2014;53:1–32.

    Article  PubMed  Google Scholar 

  52. Cideciyan AV, Aleman TS, Swider M, Schwartz SB, Steinberg JD, Brucker AJ, et al. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet. 2004;1(5):525–34.

    Article  Google Scholar 

  53. Tezel TH, Del Priore LV. Repopulation of different layers of host human Bruch’s membrane by retinal pigment epithelial cell grafts. Invest Ophthalmol Vis Sci. 1999;40(3):767–74.

    CAS  PubMed  Google Scholar 

  54. Mangione CM, Lee PP, Gutierrez PR, Spritzer K, Berry S, Hays RD, et al. Development of the 25-item national eye institute visual function questionnaire. Arch Ophthalmol. 2001;119(7):1050–8.

    Article  CAS  PubMed  Google Scholar 

  55. Wu Z, Ayton LN, Luu CD, Guymer RH. Longitudinal changes in microperimetry and low luminance visual acuity in age-related macular degeneration. JAMA Ophthalmol. 2015;133(4):442–8.

    Article  PubMed  Google Scholar 

  56. Sunness JS, Rubin GS, Broman A, Applegate CA, Bressler NM, Hawkins BS. Low luminance visual dysfunction as a predictor of subsequent visual acuity loss from geographic atrophy in age-related macular degeneration. Ophthalmology. 2008;115(9):1480–8. 8 e1-2.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sunness JS. Stem cells in age-related macular degeneration and Stargardt’s macular dystrophy. Lancet. 2015;386(9988):29.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ninel Z. Gregori M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gregori, N.Z., Medina, C.A., Sachdeva, M.M., Eliott, D. (2017). Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cell Transplantation for Retinal Degeneration. In: Schwartz, S., Nagiel, A., Lanza, R. (eds) Cellular Therapies for Retinal Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-49479-1_1

Download citation

Publish with us

Policies and ethics