Skip to main content

Dominant Stargardt Macular Dystrophy (STGD3) and ELOVL4

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 801))

Abstract

Autosomal dominant Stargardt3 Macular Dystrophy (STGD3) results from mutations in the ELOVL4 gene. ELOVL4 protein localizes to the endoplasmic reticulum (ER), where it mediates the rate-limiting condensation reaction during very long-chain (VLC, ≥  C28) fatty acid biosynthesis. The defective gene product is truncated at the C-terminus, leading to mislocalization and aggregation in other organelles. In this review, we summarize our current understanding of the disease-causing mutation and its potential role in STGD3 pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein PS, Tammur J, Singh N, Hutchinson A, Dixon M, Pappas CM, Zabriskie NA, Zhang K, Petrukhin K, Leppert M, Allikmets R (2001) Diverse macular dystrophy phenotype caused by a novel complex mutation in the ELOVL4 gene. Invest Ophthalmol Vis Sci 42(13):3331–3336

    PubMed  CAS  Google Scholar 

  2. Edwards AO, Donoso LA, Ritter R 3rd (2001) A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest Ophthalmol Vis Sci 42(11):2652–2663

    PubMed  CAS  Google Scholar 

  3. Zhang K, Kniazeva M, Han M, Li W, Yu Z, Yang Z, Li Y, Metzker ML, Allikmets R, Zack DJ, Kakuk LE, Lagali PS, Wong PW, MacDonald IM, Sieving PA, Figueroa DJ, Austin CP, Gould RJ, Ayyagari R, Petrukhin K (2001) A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 27(1):89–93

    Article  PubMed  CAS  Google Scholar 

  4. Maugeri A, Meire F, Hoyng CB, Vink C, Van Regemorter N, Karan G, Yang Z, Cremers FP, Zhang K (2004) A novel mutation in the ELOVL4 gene causes autosomal dominant Stargardt-like macular dystrophy. Invest Ophthalmol Vis Sci 45(12):4263–4267

    Article  PubMed  Google Scholar 

  5. Agbaga MP, Brush RS, Mandal MN, Henry K, Elliott MH, Anderson RE (2008) Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci U S A 105(35):12843–12848

    Article  PubMed Central  PubMed  Google Scholar 

  6. Logan S, Agbaga MP, Chan MD, Kabir N, Mandal NA, Brush RS, Anderson RE (2013) Deciphering mutant ELOVL4 activity in autosomal-dominant Stargardt macular dystrophy. Proc Natl Acad Sci U S A 110(14):5446–5451

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. BioChemistry 33(43):12787–12794

    Article  PubMed  CAS  Google Scholar 

  8. Nugteren DH (1965) The enzymic chain elongation of fatty acids by rat-liver microsomes. Biochim Biophys Acta 106(2):280–290

    Article  PubMed  CAS  Google Scholar 

  9. Aveldano MI (1987) A novel group of very long chain polyenoic fatty acids in dipolyunsaturated phosphatidylcholines from vertebrate retina. J Biol Chem 262(3):1172–1179

    PubMed  CAS  Google Scholar 

  10. Aveldano MI, Sprecher H (1987) Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J Biol Chem 262(3):1180–1186

    PubMed  CAS  Google Scholar 

  11. Poulos A (1995) Very long chain fatty acids in higher animals—a review. Lipids 30(1):1–14

    Article  PubMed  CAS  Google Scholar 

  12. Aveldano MI (1988) Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of photoreceptor membranes. BioChemistry 27(4):1229–1239

    Article  PubMed  CAS  Google Scholar 

  13. Poulos A, Sharp P, Singh H, Johnson D, Fellenberg A, Pollard A (1986) Detection of a homologous series of C26-C38 polyenoic fatty acids in the brain of patients without peroxisomes (Zellweger’s syndrome). Biochem J 235(2):607–610

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Poulos A (1989) Lipid metabolism in Zellweger’s syndrome. Prog Lipid Res 28(1):35–51

    Article  PubMed  CAS  Google Scholar 

  15. Poulos A, Sharp P, Johnson D, White I, Fellenberg A (1986) The occurrence of polyenoic fatty acids with greater than 22 carbon atoms in mammalian spermatozoa. Biochem J 240(3):891–895

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Furland NE, Zanetti SR, Oresti GM, Maldonado EN, Aveldano MI (2007) Ceramides and sphingomyelins with high proportions of very long-chain polyunsaturated fatty acids in mammalian germ cells. J Biol Chem 282(25):18141–18150

    Article  PubMed  CAS  Google Scholar 

  17. Vasireddy V, Uchida Y, Salem N Jr, Kim SY, Mandal MN, Reddy GB, Bodepudi R, Alderson NL, Brown JC, Hama H, Dlugosz A, Elias PM, Holleran WM, Ayyagari R (2007) Loss of functional ELOVL4 depletes very long-chain fatty acids (> or = C28) and the unique omega-O-acylceramides in skin leading to neonatal death. Hum Mol Genet 16(5):471–482

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Cameron DJ, Tong Z, Yang Z, Kaminoh J, Kamiyah S, Chen H, Zeng J, Chen Y, Luo L, Zhang K (2007) Essential role of Elovl4 in very long chain fatty acid synthesis, skin permeability barrier function, and neonatal survival. Int J Biol Sci 3(2):111–119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Li W, Chen Y, Cameron DJ, Wang C, Karan G, Yang Z, Zhao Y, Pearson E, Chen H, Deng C, Howes K, Zhang K (2007) Elovl4 haploinsufficiency does not induce early onset retinal degeneration in mice. Vision Res 47(5):714–722

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Li W, Sandhoff R, Kono M, Zerfas P, Hoffmann V, Ding BC, Proia RL, Deng CX (2007) Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice. Int J Biol Sci 3(2):120–128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. McMahon A, Butovich IA, Mata NL, Klein M, Ritter R 3rd, Richardson J, Birch DG, Edwards AO, Kedzierski W (2007) Retinal pathology and skin barrier defect in mice carrying a Stargardt disease-3 mutation in elongase of very long chain fatty acids-4. Mol Vis 13:258–272

    PubMed Central  PubMed  CAS  Google Scholar 

  22. McMahon A, Jackson SN, Woods AS, Kedzierski W (2007) A Stargardt disease-3 mutation in the mouse Elovl4 gene causes retinal deficiency of C32-C36 acyl phosphatidylcholines. FEBS Lett 581(28):5459–5463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Karan G, Lillo C, Yang Z, Cameron DJ, Locke KG, Zhao Y, Thirumalaichary S, Li C, Birch DG, Vollmer-Snarr HR, Williams DS, Zhang K. (2005) Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc Natl Acad Sci U S A 102(11):4164–4169

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Sommer JR, Estrada JL, Collins EB, Bedell M, Alexander CA, Yang Z, Hughes G, Mir B, Gilger BC, Grob S, Wei X, Piedrahita JA, Shaw PX, Petters RM, Zhang K (2011) Production of ELOVL4 transgenic pigs: a large animal model for Stargardt-like macular degeneration. Br J Ophthalmol 95(12):1749–1754

    Article  PubMed  Google Scholar 

  25. Ambasudhan R, Wang X, Jablonski MM, Thompson DA, Lagali PS, Wong PW, Sieving PA, Ayyagari R (2004) Atrophic macular degeneration mutations in ELOVL4 result in the intracellular misrouting of the protein. Genomics 83(4):615–625

    Article  PubMed  CAS  Google Scholar 

  26. Grayson C, Molday RS (2005) Dominant negative mechanism underlies autosomal dominant Stargardt-like macular dystrophy linked to mutations in ELOVL4. J Biol Chem 280(37):32521–32530

    Article  PubMed  CAS  Google Scholar 

  27. Vasireddy V, Vijayasarathy C, Huang J, Wang XF, Jablonski MM, Petty HR, Sieving PA, Ayyagari R (2005) Stargardt-like macular dystrophy protein ELOVL4 exerts a dominant negative effect by recruiting wild-type protein into aggresomes. Mol Vis 11:665–676

    PubMed  CAS  Google Scholar 

  28. Karan G, Yang Z, Zhang K (2004) Expression of wild type and mutant ELOVL4 in cell culture: subcellular localization and cell viability. Mol Vis 10:248–253

    PubMed  CAS  Google Scholar 

  29. Li F, Marchette LD, Brush RS, Elliott MH, Le YZ, Henry KA, Anderson AG, Zhao C, Sun X, Zhang K, Anderson RE (2009) DHA does not protect ELOVL4 transgenic mice from retinal degeneration. Mol Vis 15:1185–1193

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Dornstauder B, Suh M, Kuny S, Gaillard F, Macdonald IM, Clandinin MT, Sauve Y (2012) Dietary docosahexaenoic acid supplementation prevents age-related functional losses and A2E accumulation in the retina. Invest Ophthalmol Vis Sci 53(4):2256–2265

    Article  PubMed  Google Scholar 

  31. MacDonald IM, Hebert M, Yau RJ, Flynn S, Jumpsen J, Suh M, Clandinin MT (2004) Effect of docosahexaenoic acid supplementation on retinal function in a patient with autosomal dominant Stargardt-like retinal dystrophy. Br J Ophthalmol 88(2):305–306

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH Grants EY00871, EY04149, EY21725, EY21725 and RR17703; Foundation Fighting Blindness, Inc., and Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Logan, S., Anderson, R. (2014). Dominant Stargardt Macular Dystrophy (STGD3) and ELOVL4. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_57

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics