Skip to main content

Mechanobiology of the Intervertebral Disc and Treatments Working in Conjunction with the Human Anatomy

  • Living reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

Degenerative conditions of the spine benefit from a methodical approach for the management of patients with chronic low back pain when offered surgery. Surgical solutions should consider the severity of the disease along with the approach in order to provide the patient with the best potential long-term outcomes. Posterior dynamic stabilization is considered to be an alternative therapy to rigid spinal fusion and is intended to produce equal stability within the affected vertebral space, while promoting additional mobility. Through its use in treating conditions such as spondylolisthesis, disc degeneration, and disc herniation, posterior dynamic stabilization has emerged as a potential solution to unintended consequences of more conventional therapeutic modalities, like rigid spinal fusion. Complications, such as adjacent disc disease, may be mitigated through an approach that permits additional mobility, returning the pathological segments to their intact range of movement and functionality. This chapter will review the history and development of posterior dynamic stabilization devices from their early inception to the current state of the art, as well as analyze the current pros and cons (garnered through both biomechanical and clinical testing) of each. Specifically, it will focus on the following device categories: interspinous spacers, pedicle screw and rod-based devices, and total facet replacement systems. Finally, there will be a discussion regarding the shortcomings of current metrics used to test such devices, along with an analysis on the cooperation between industry leaders and surgeons in designing said devices.

Antonio Castellvi is deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anekstein Y, Floman Y, Smorgick Y, Rand N, Millgram M, Mirovsky Y (2015) Seven years follow-up for total lumbar facet joint replacement (TOPS) in the management of lumbar spinal stenosis and degenerative spondylolisthesis. Eur Spine J 24:2306–2314

    Article  PubMed  Google Scholar 

  • Barrey C, Perrin G, Champain S (2013) Pedicle-screw-based dynamic systems and degenerative lumbar diseases: biomechanical and clinical experiences of dynamic fusion with isobar TTL. ISRN Orthop 2013:1–10

    Article  Google Scholar 

  • Bothmann M, Kast E, Boldt GJ, Oberle J (2008) Dynesys fixation for lumbar spine degeneration. Neurosurg Rev 31:189–196

    Article  PubMed  Google Scholar 

  • Bozkus H, Senoglu M, Baek S, Sawa AG, Ozer AF, Sonntag VK, Crawford NR (2010) Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization. J Neurosurg Spine 12:183–189

    Article  PubMed  Google Scholar 

  • Castellvi AE, Huang H, Vestgaarden T, Saigal S, Clabeaux DH, Pienkowski D (2007) Stress reduction in adjacent level discs via dynamic instrumentation: a finite element analysis. SAS J 1(2):74–81. https://doi.org/10.1016/SASJ-2007-0004-RR. PMID: 25802582; PMCID: PMC4365575

  • Cheng BC, Bellotte JB, Yu A, Swidarski K, Whiting DM (2010) Historical overview and rationale for dynamic fusion. ArgoSpine News J 22:53–56

    Article  Google Scholar 

  • Cook DJ, Yeager MS, Thampi SS, Whiting DM, Cheng BC (2015) Stability and load sharing characteristics of a posterior dynamic stabilization device. Int J Spine Surg 9:1–10

    Google Scholar 

  • Cripton PA, Jain GM, Rwittenberg RH, Nolte LP (2000) Load-sharing characteristics of stabilized lumbar spine segments. Spine 25:170–179

    Article  CAS  PubMed  Google Scholar 

  • Fabrizi AP, Maina R, Schiabello L (2011) Interspinous spacers in the treatment of degenerative lumbar spinal disease: our experience with DIAM and Aperius devices. Eur Spine J 20:20–26

    Article  PubMed Central  Google Scholar 

  • Floman Y, Millgram MA, Smorgick Y, Rand N, Ashkenazi E (2007) Failure of the Wallis interspinous implant to lower the incidence of recurrent lumbar disc herniations in patients undergoing primary disc excision. J Spinal Disord Tech 20:337–341

    Article  PubMed  Google Scholar 

  • Gao J, Zhao W, Zhang X, Nong L, Zhou D, Lv Z, Sheng Y, Wu X (2014) MRI analysis of the ISOBAR TTL internal fixation system for the dynamic fixation of intervertebral discs: a comparison with rigid internal fixation. J Orthop Surg Res 9:1–6

    Google Scholar 

  • Gomleksiz C, Sasani M, Oktenoglu T, Ozer AF (2012) A short history of posterior dynamic stabilization. Adv Orthop 2012:1–12

    Article  Google Scholar 

  • Grevitt MP, GArdner ADH, Spilsbury J, Shackleford IM, Baskerville R, Pursell LM, Hassaan A, Mulholland RC (1995) The Graf stabilisation system: early results in 50 patients. Eur Spine J 4:169–175

    Article  CAS  PubMed  Google Scholar 

  • Hadlow SV, Fagan AB, Hillier TM, Fraser RD (1998) The Graf ligamentoplasty procedure. Spine 23:1172–1179

    Article  CAS  PubMed  Google Scholar 

  • Heo DH, Cho YJ, Cho SM, Choi HC, Kang SH (2012) Adjacent segment degeneration after lumbar dynamic stabilization using pedicle screws and a nitinol spring rod system with 2-year minimum follow-up. J Spinal Disord Tech 25:409–414

    Article  PubMed  Google Scholar 

  • Johnson WEB, Roberts S (2003) Human intervertebral disc cell morphology and cytoskeletal composition: a preliminary study of regional variations in health and disease. J Anat 203:605–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaner T, Sasani M, Oktenoglu T, Cosar M, Ozer AF (2009) Utilizing dynamic rods with dynamic screws in the surgical treatment of chronic instability: a prospective clinical study. Turk Neurosurg 19:319–326

    PubMed  Google Scholar 

  • Kang R, Li H, Rickers K, Ringgaard S, Xie L, Bünger C (2015) Intervertebral disc degenerative changes after intradiscal injection of TNF-α in a porcine model. Eur Spine J 24(9):2010–2016. https://doi.org/10.1007/s00586-015-3926-x. Epub 2015 Apr 8. PMID: 25850392

  • Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ (2008) Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech 23:242–247

    Article  CAS  Google Scholar 

  • Khoueir P, Kim KA, Wang MY (2007) Classification of posterior dynamic stabilization devices. Neurosurg Focus 22:1–8

    Article  Google Scholar 

  • Kurtz SM, Lanman TH, Higgs G, Macdonald DW, Berven SH, Isaza JE, Phillips E, Steinbeck MJ (2013) Retrieval analysis of PEEK rods for posterior fusion and motion preservation. Eur Spine J 22:2752–2759

    Article  PubMed  PubMed Central  Google Scholar 

  • Madan S, Boeree NR (2003) Outcome of the Graf ligamentoplasty procedure compared with anterior lumbar interbody fusion with the Hartshill horseshoe cage. Eur Spine J 12:361–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Maleci A, Sambale RD, Schiavone M, Lamp F, Ozer F, Von Strempel A (2011) Nonfusion stabilization of the degenerative lumbar spine. J Neurosurg Spine 15:151–158

    Article  PubMed  Google Scholar 

  • Mandigo CE, Sampath P, Kaiser MG (2007) Posterior dynamic stabilization of the lumbar spine: pedicle-based stabilization with the AccuFlex rod system. Neurosurg Focus 22:1–4

    Article  Google Scholar 

  • Markwalder TM, Wenger M (2003) Dynamic stabilization of lumbar motion segments by use of Graf's ligaments: results with an average follow-up of 7.4 years in 39 highly selected, consecutive patients. Acta Neurochir 145:209–214

    Article  PubMed  Google Scholar 

  • Molinari RW (2007) Dynamic stabilization of the lumbar spine. Curr Opin Orthop 18:215–220

    Article  Google Scholar 

  • Ormond DR, Albert L, Das K (2016) Polyetheretherketone (PEEK) rods in lumbar spine degenerative disease. Clin Spine Surg 29:E371–E375

    Article  PubMed  Google Scholar 

  • Ozer AF, Crawford NR, Sasani M, Oktenoglu T, Bozkus H, Kaner T, Aydin S (2010) Dynamic lumbar pedicle screw-rod stabilization: two-year follow-up and comparison with fusion~!2009-12-30~!2010-02-04~!2010-03-04~! Open Orthop J 4:137–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Panjabi MM, Timm JP (2007) Development of stabilimax NZ from biomechanical principles. Int J Spine Surg 1:2–7

    Article  Google Scholar 

  • Pintauro M, Duffy A, Vahedi P, Rymarczuk G, Heller J (2017) Interspinous implants: are the new implants better than the last generation? A review. Curr Rev Musculoskelet Med 10:189–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Puzzilli F, Gazzeri R, Galarza M, Neroni M, Panagiotopoulos K, Bolognini A, Callovini G, Agrillo U, Alfieri A (2014) Interspinous spacer decompression (X-STOP) for lumbar spinal stenosis and degenerative disk disease: a multicenter study with a minimum 3-year follow-up. Clin Neurol Neurosurg 124:166–174

    Article  PubMed  Google Scholar 

  • Reyes-Sánchez A, Zárate-Kalfópulos B, Ramírez-Mora I, Rosales-Olivarez LM, Alpizar-Aguirre A, Sánchez-Bringas G (2010) Posterior dynamic stabilization of the lumbar spine with the Accuflex rod system as a stand-alone device: experience in 20 patients with 2-year follow-up. Eur Spine J 19:2164–2170

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter A, Schütz C, Hauck M, Halm H (2009) Does an interspinous device (Coflexâ„¢) improve the outcome of decompressive surgery in lumbar spinal stenosis? One-year follow up of a prospective case control study of 60 patients. Eur Spine J 19:283–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Rigby M, Selmon G, Foy M, Fogg A (2001) Graf ligament stabilisation: mid- to long-term follow-up. Eur Spine J 10:234–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzenbach O, Berlemann U, Stoll TM, Dubois G (2005) Posterior dynamic stabilization systems: DYNESYS. Orthop Clin N Am 36:363–372

    Article  Google Scholar 

  • Senegas J, Etchevers JP, Vital JM, Baulny D, Grenier F (1988) Recalibration of the lumbar canal, an alternative to laminectomy in the treatment of lumbar canal stenosis. Rev Chir Orthop Reparatrice Appar Mot 74(1):15–22. French. PMID: 2967989

    Google Scholar 

  • Sengupta DK (2004) Dynamic stabilization devices in the treatment of low back pain. Orthop Clin North Am 35:43–56

    Article  PubMed  Google Scholar 

  • Sengupta DK, Herkowitz HN (2012) Pedicle screw-based posterior dynamic stabilization: literature review. Adv Orthop 2012:1–7

    Article  Google Scholar 

  • Sengupta DK, Mulholland RC (2005) Fulcrum assisted soft stabilization system. Spine 30:1019–1029

    Article  PubMed  Google Scholar 

  • Serhan H, Mhatre D, Defossez H, Bono CM (2011) Motion-preserving technologies for degenerative lumbar spine: the past, present, and future horizons. SAS J 5:75–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Sjovold SG, Zhu Q, Bowden A, Larson CR, De Bakker PM, Villarraga ML, Ochoa JA, Rosler DM, Cripton PA (2012) Biomechanical evaluation of the Total Facet Arthroplasty System® (TFAS®): loading as compared to a rigid posterior instrumentation system. Eur Spine J 21:1660–1673

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobottke R, Schlüter-Brust K, Kaulhausen T, Röllinghoff M, Joswig B, Stützer H, Eysel P, Simons P, Kuchta J (2009) Interspinous implants (X Stop®, Wallis®, Diam®) for the treatment of LSS: is there a correlation between radiological parameters and clinical outcome? Eur Spine J 18:1494–1503

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoffel M, Behr M, Reinke A, Stüer C, Ringel F, Meyer B (2010) Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic®-system: a prospective observation. Acta Neurochir 152:835–843

    Article  PubMed  Google Scholar 

  • Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178

    Article  PubMed  PubMed Central  Google Scholar 

  • Vergroesen PP, Kingma I, Emanuel KS, Hoogendoorn RJ, Welting TJ, Van Royen BJ, Van Dieen JH, Smit TH (2015) Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthritis Cartilage 23:1057–1070

    Article  PubMed  Google Scholar 

  • Wang C, Yu X, Yan Y, Yang W, Zhang S, Xiang Y, Zhang J, Wang W (2017) Tumor necrosis factor-alpha: a key contributor to intervertebral disc degeneration. Acta Biochim Biophys Sin (Shanghai) 49:1–13

    Article  CAS  Google Scholar 

  • Welch WC, Cheng BC, Awad TE, Davis R, Maxwell JH, Delamarter R, Wingate JK, Sherman J, Macenski MM (2007) Clinical outcomes of the Dynesys dynamic neutralization system: 1-year preliminary results. Neurosurg Focus 22:1–8

    Article  Google Scholar 

  • World Health Organization (2010) Increasing complexity of medical technology and consequences for training and outcome of care: background paper 4, August 2010. World Health Organization

    Google Scholar 

  • Xu C, Ni W-F, Tian N-F, Hu X-Q, Li F, Xu H-Z (2013) Complications in degenerative lumbar disease treated with a dynamic interspinous spacer (Coflex). Int Orthop 37:2199–2204

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Park JY, Cho BY (2009) The BioFlex system as a dynamic stabilization device: does it preserve lumbar motion? J Korean Neurosurg Soc 46:1066–1070

    Google Scholar 

  • Zhang L, Shu X, Duan Y, Ye G, Jin A (2012) Effectiveness of ISOBAR TTL semi-rigid dynamic stabilization system in treatment of lumbar degenerative disease. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 26:1066–1070

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Jaffee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jaffee, S. et al. (2021). Mechanobiology of the Intervertebral Disc and Treatments Working in Conjunction with the Human Anatomy. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics