Skip to main content

B-Cells in Stroke and Preconditioning-Induced Protection Against Stroke

  • Chapter
  • First Online:
Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke

Abstract

It is well-understood that inflammation following stroke onset contributes to neuronal injury, blood–brain barrier (BBB) disruption, and functional deficits during recovery. But which leukocyte subsets critically contribute to injury, and more importantly which may be necessary for neurorepair, remains to be fully elucidated. One emerging concept is that B-cells, and specifically regulatory B-cells, exhibit the potential to contribute to anti-inflammatory, protective mechanisms during acute recovery. Unfortunately, few studies have investigated the role of B-cells during ischemic brain injury. This chapter reviews B-cell development and function, as well as the contribution of B-cells to pathology during other autoimmune diseases. This is followed by an overview of inflammatory mechanisms after stroke, with emphasis on a potential role for B-cells in post-stroke autoimmunity. Research will be summarized that highlights the role for B-cells in acute CNS neuroprotection after stroke, as well as new data suggesting that B-cells may be detrimental to long-term cognitive function in experimental stroke. Finally, this chapter will focus on preconditioning, a method by which non-injurious, noxious stimuli create an ischemia-tolerant phenotype to protect from stroke. Several preconditioning paradigms that affect B-cell function, including hypoxia, exercise, and exposure to lipopolysaccharide (LPS), will be reviewed, with an emphasis on the clinical relevance to populations at-risk for stroke. While more research is needed to clearly define the role of B-cells in post-stroke recovery, this chapter will highlight several mechanisms by which B-cells can directly influence recovery in the injured CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCs:

Antigen-presenting cells

BAFF:

B-cell-activating factor

BBB:

Blood–brain barrier

B cells:

B-lymphocytes

BCR:

B-cell receptor

BDNF:

Brain-derived neurotrophic factor

Bregs:

Regulatory B-cells

CCL2:

Chemokine (C–C motif) ligand 2

CLN:

Cervical lymph node

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CSPGs:

Chondroitin sulfate proteoglycans

CXCL13:

Chemokine (C–X–C motif) ligand 13

DAMPs:

Danger-associated molecular pattern molecules

EAE:

Experimental autoimmune encephalomyelitis

ICAM-1:

Intracellular adhesion molecule

Ig:

Immunoglobulin

IL-:

Interleukin

IFNγ:

Interferon γ

LPS:

Lipopolysaccharide

LTP:

Long-term potentiation

MAP2:

Microtubule-associated protein 2

MBP:

Myelin basic protein

MCAo:

Middle cerebral artery occlusion

MHC:

Major histocompatibility class

MOG:

Myelin oligodendrocyte glycoprotein

MS:

Multiple sclerosis

μMT−/− :

Transmembrane exon of the IgM heavy chain

MZ B-cells:

Marginal zone B-cells

NA:

Noradrenaline

nIgM:

Natural IgM

NR2A:

N-methyl-D-aspartate (NMDA) receptor subunit 2A

RA:

Rheumatoid Arthritis

RF:

Rheumatoid factor

RHP:

Repetitive hypoxic preconditioning

ROS:

Reactive oxygen species

Sema3a:

Semaphorin IIIa

SHP:

Single-exposure hypoxic preconditioning

SLE:

Systemic lupus erythematosus

TACI:

Transmembrane activator and calcium modulator and cyclophilin ligand interactor

TGF-β:

Transforming growth factor β

Th cells:

T helper cells

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor α

References

  1. Reth M, Wienands J. Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol. 1997;15:453–79 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  2. Carrasco YR, Batista FD. B cell recognition of membrane-bound antigen: an exquisite way of sensing ligands. Curr Opin Immunol. 2006;18(3):286–91 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  3. Carrasco YR, Batista FD. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity. 2007;27(1):160–71 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  4. Yuseff MI, Lankar D, Lennon-Dumenil AM. Dynamics of membrane trafficking downstream of B and T cell receptor engagement: impact on immune synapses. Traffic. 2009;10(6):629–36 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carrasco YR, Fleire SJ, Cameron T, Dustin ML, Batista FD. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity. 2004;20(5):589–99 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  6. Mitchison NA. Landmark—T-cell-B-cell cooperation. Nat Rev Immunol. 2004;4(4):308–12.

    Article  CAS  PubMed  Google Scholar 

  7. Andersson J, Melchers F. T-cell-dependent activation of resting B-cells—requirement for both nonspecific unrestricted and antigen-specific Ia-restricted soluble factors. Proc Natl Acad Sci U S A. 1981;78(4):2497–501.

    Article  Google Scholar 

  8. Liebson HJ, Marrack P, Kappler J. B cell helper factors. II. Synergy among three helper factors in the response of T cell- and macrophage-depleted B cells. J Immunol. 1982;129(4):1398–402.

    CAS  PubMed  Google Scholar 

  9. Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol. 2002;2(12):945–56 [Research Support, U.S. Gov’t, P.H.S. Review].

    Article  CAS  PubMed  Google Scholar 

  10. Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M, Hartley SB, et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 2005;3(6):e150 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ, Jenkins MK. Visualization of specific B and T lymphocyte interactions in the lymph node. Science. 1998;281(5373):96–9 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  12. Lee FY, Wen MC, Wang J. A 28 year old lady with a pituitary mass. Brain Pathol. 2012;22(4):563–6.

    Article  PubMed  Google Scholar 

  13. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ortega SB, Noorbhai I, Poinsatte K, Kong X, Anderson A, Monson NL, et al. Stroke induces a rapid adaptive autoimmune response to novel neuronal antigens. Discov Med. 2015;19(106):381–92.

    PubMed  PubMed Central  Google Scholar 

  15. Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan IC. Mechanism of antigen-driven selection in germinal centres. Nature. 1989;342(6252):929–31 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  16. Sartoris S, Tosi G, De Lerma BA, Cestari T, Accolla RS. Active suppression of the class II transactivator-encoding AIR-1 locus is responsible for the lack of major histocompatibility complex class II gene expression observed during differentiation from B cells to plasma cells. Eur J Immunol. 1996;26(10):2456–60 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  17. Latron F, Jotterand-Bellomo M, Maffei A, Scarpellino L, Bernard M, Strominger JL, et al. Active suppression of major histocompatibility complex class II gene expression during differentiation from B cells to plasma cells. Proc Natl Acad Sci U S A. 1988;85(7):2229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Slifka MK, Ahmed R. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr Opin Immunol. 1998;10(3):252–8 [Review].

    Article  CAS  PubMed  Google Scholar 

  19. Liesz A, Roth S, Zorn M, Sun L, Hofmann K, Veltkamp R. Acquired immunoglobulin G deficiency in stroke patients and experimental brain ischemia. Exp Neurol. 2015;271:46–52.

    Article  CAS  PubMed  Google Scholar 

  20. Doyle KP, Quach LN, Sole M, Axtell RC, Nguyen TV, Soler-Llavina GJ, et al. B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci. 2015;35(5):2133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14(5):617–29 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  22. Bendelac A, Bonneville M, Kearney JF. Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol. 2001;1(3):177–86 [Review].

    Article  CAS  PubMed  Google Scholar 

  23. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3(10):944–50 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  24. Matsushita T, Horikawa M, Iwata Y, Tedder TF. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol. 2010;185(4):2240–52 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ray A, Mann MK, Basu S, Dittel BN. A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol. 2011;230(1–2):1–9 [Review].

    Article  CAS  PubMed  Google Scholar 

  26. Shimomura Y, Mizoguchi E, Sugimoto K, Kibe R, Benno Y, Mizoguchi A, et al. Regulatory role of B-1 B cells in chronic colitis. Int Immunol. 2008;20(6):729–37 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  27. Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–12 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  28. Gray D, Gray M. What are regulatory B cells? Eur J Immunol. 2010;40(10):2677–9.

    Article  CAS  PubMed  Google Scholar 

  29. Mizoguchi A, Bhan AK. A case for regulatory B cells. J Immunol. 2006;176(2):705–10 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  30. Lundy SK. Killer B lymphocytes: the evidence and the potential. Inflamm Res. 2009;58(7):345–57 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  31. Zhang XM. Regulatory functions of innate-like B cells. Cell Mol Immunol. 2013;10(2):113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev. 2011;241:260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41.

    Article  CAS  PubMed  Google Scholar 

  34. DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci. 2010;1183:38–57.

    Article  CAS  PubMed  Google Scholar 

  35. O’Garra A, Chang R, Go N, Hastings R, Haughton G, Howard M. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur J Immunol. 1992;22(3):711–7 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  36. Spencer NF, Daynes RA. IL-12 directly stimulates expression of IL-10 by CD5+ B cells and IL-6 by both CD5+ and CD5- B cells: possible involvement in age-associated cytokine dysregulation. Int Immunol. 1997;9(5):745–54 [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  37. Lampropoulou V, Hoehlig K, Roch T, Neves P, Calderon Gomez E, Sweenie CH, et al. TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol. 2008;180(7):4763–73 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  38. Liang J, Wang J, Saad Y, Warble L, Becerra E, Kolattukudy PE. Participation of MCP-induced protein 1 in lipopolysaccharide preconditioning-induced ischemic stroke tolerance by regulating the expression of proinflammatory cytokines. J Neuroinflammation. 2011;8:182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, et al. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci. 2007;27(27):7083–93.

    Article  CAS  PubMed  Google Scholar 

  40. LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takhar P, Smurthwaite L, Coker HA, Fear DJ, Banfield GK, Carr VA, et al. Allergen drives class switching to IgE in the nasal mucosa in allergic rhinitis. J Immunol. 2005;174(8):5024–32.

    Article  CAS  PubMed  Google Scholar 

  42. KleinJan A, Vinke JG, Severijnen LWFM, Fokkens WJ. Local production and detection of (specific) IgE in nasal B-cells and plasma cells of allergic rhinitis patients. Eur Respir J. 2000;15(3):491–7.

    Article  CAS  PubMed  Google Scholar 

  43. Sinha AA, Lopez MT, Mcdevitt HO. Autoimmune-diseases—the failure of self tolerance. Science. 1990;248(4961):1380–8.

    Article  CAS  PubMed  Google Scholar 

  44. Yang M, Rui K, Wang S, Lu L. Regulatory B cells in autoimmune diseases. Cell Mol Immunol. 2013;10(2):122–32 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Edwards JCW, Cambridge G, Abrahams VM. Do self-perpetuating B lymphocytes drive human autoimmune disease? Immunology. 1999;97(2):188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bindon CI, Hale G, Bruggemann M, Waldmann H. Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q. J Exp Med. 1988;168(1):127–42 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  47. Tom BH, Raffel S. Complement-dependent anaphylactic reactions. Infect Immun. 1975;11(6):1284–90 [Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shlomchik MJ, Craft JE, Mamula MJ. From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol. 2001;1(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez-Pinto D, Moreno J. B cells can prime naive CD4(+) T cells in vivo in the absence of other professional antigen-presenting cells in a CD154-CD40-dependent manner. Eur J Immunol. 2005;35(4):1097–105.

    Article  CAS  PubMed  Google Scholar 

  50. Yan J, Harvey BP, Gee RJ, Shlomchik MJ, Mamula MJ. B cells drive early T cell autoimmunity in vivo prior to dendritic cell-mediated autoantigen presentation. J Immunol. 2006;177(7):4481–7.

    Article  CAS  PubMed  Google Scholar 

  51. Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM, et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol. 2000;1(6):475–82.

    Article  CAS  PubMed  Google Scholar 

  52. Martin F, Chan AC. B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol. 2006;24:467–96.

    Article  CAS  PubMed  Google Scholar 

  53. Manzo A, Paoletti S, Carulli M, Blades MC, Barone F, Yanni G, et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol. 2005;35(5):1347–59 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  54. Kucharz EJ. Chronic inflammation-enhanced atherosclerosis: can we consider it as a new clinical syndrome? Med Hypotheses. 2012;78(3):396–7.

    Article  CAS  PubMed  Google Scholar 

  55. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000;343(13):938–52 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    Article  CAS  PubMed  Google Scholar 

  56. Pierson ER, Stromnes IM, Goverman JM. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system. J Immunol. 2014;192(3):929–39 [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  Google Scholar 

  57. Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest. 2008;118(10):3420–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pettinelli CB, Mcfarlin DE. Adoptive transfer of experimental allergic encephalomyelitis in Sjl-J mice after invitro activation of lymph-node cells by myelin basic-protein—requirement for Lyt 1+ 2- lymphocytes-T. J Immunol. 1981;127(4):1420–3.

    CAS  PubMed  Google Scholar 

  59. Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol. 1989;124(1):132–43.

    Article  CAS  PubMed  Google Scholar 

  60. O’Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC, et al. Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol. 2008;181(6):3750–4 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  Google Scholar 

  61. Koutrolos M, Berer K, Kawakami N, Wekerle H, Krishnamoorthy G. Treg cells mediate recovery from EAE by controlling effector T cell proliferation and motility in the CNS. Acta Neuropathol Commun. 2014;2:163 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kabat EA, Glusman M, Knaub V. Quantitative estimation of the albumin and gamma-globulin in normal and pathologic cerebrospinal fluid by immunochemical methods. Am J Med. 1948;4(5):653–62.

    Article  CAS  PubMed  Google Scholar 

  63. Linington C, Bradl M, Lassmann H, Brunner C, Vass K. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol. 1988;130(3):443–54 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lyons JA, San M, Happ MP, Cross AH. B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur J Immunol. 1999;29(11):3432–9 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  65. Gausas J, Paterson PY, Day ED, Dalcanto MC. Intact B-cell activity is essential for complete expression of experimental allergic encephalomyelitis in Lewis rats. Cell Immunol. 1982;72(2):360–6.

    Article  CAS  PubMed  Google Scholar 

  66. Willenborg DO, Sjollema P, Danta G. Immunoglobulin deficient rats as donors and recipients of effector-cells of allergic encephalomyelitis. J Neuroimmunol. 1986;11(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  67. Bettelli E, Baeten D, Jager A, Sobel RA, Kuchroo VK. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest. 2006;116(9):2393–402 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest. 2006;116(9):2385–92 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mok CC, Lau CS. Pathogenesis of systemic lupus erythematosus. J Clin Pathol. 2003;56(7):481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alba P, Bento L, Cuadrado MJ, Karim Y, Tungekar MF, Abbs I, et al. Anti-dsDNA, anti-Sm antibodies, and the lupus anticoagulant: significant factors associated with lupus nephritis. Ann Rheum Dis. 2003;62(6):556–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Forger F, Matthias T, Oppermann M, Becker H, Helmke K. Clinical significance of anti-dsDNA antibody isotypes: IgG/IgM ratio of anti-dsDNA antibodies as a prognostic marker for lupus nephritis. Lupus. 2004;13(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  72. Cortes-Hernandez J, Ordi-Ros J, Labrador M, Bujan S, Balada E, Segarra A, et al. Antihistone and anti-double-stranded deoxyribonucleic acid antibodies are associated with renal disease in systemic lupus erythematosus. Am J Med. 2004;116(3):165–73.

    Article  CAS  PubMed  Google Scholar 

  73. Chan VSF, Tsang HHL, Tam RCY, Lu LW, Lau CS. B-cell-targeted therapies in systemic lupus erythematosus. Cell Mol Immunol. 2013;10(2):133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reichlin M. Ribosomal P, antibodies and CNS lupus. Lupus. 2003;12(12):916–8.

    Article  CAS  PubMed  Google Scholar 

  75. Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D. The role of B-cells in Lpr/Lpr-induced autoimmunity. J Cell Biochem. 1995;10:155.

    Google Scholar 

  76. Chan O, Shlomchik MJ. A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J Immunol. 1998;160(1):51–9 [Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  77. Anolik JH, Barnard J, Cappione A, Pugh-Bernard AE, Felgar RE, Looney RJ, et al. Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum. 2004;50(11):3580–90 [Clinical Trial, Clinical Trial, Phase I, Clinical Trial, Phase II, Controlled Clinical Trial, Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  78. Kim HJ, Berek C. B cells in rheumatoid arthritis. Arthritis Res. 2000;2(2):126–31 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O’Neill SK, Shlomchik MJ, Glant TT, Cao YX, Doodes PD, Finnegan A. Antigen-specific B cells are required as APCs and autoantibody-producing cells for induction of severe autoimmune arthritis. J Immunol. 2005;174(6):3781–8.

    Article  PubMed  Google Scholar 

  80. Takemura S, Klimiuk PA, Braun A, Goronzy JJ, Weyand CM. T cell activation in rheumatoid synovium is B cell dependent. J Immunol. 2001;167(8):4710–8.

    Article  CAS  PubMed  Google Scholar 

  81. Panayi GS, Corrigall VM, Pitzalis C. Pathogenesis of rheumatoid arthritis—the role of T cells and other beasts. Rheum Dis ClinNorth Am. 2001;27(2):317–34.

    Article  CAS  Google Scholar 

  82. Zhang Z, Bridges Jr SL. Pathogenesis of rheumatoid arthritis. Role of B lymphocytes. Rheum Dis Clin North Am. 2001;27(2):335–53 [Review].

    Article  CAS  PubMed  Google Scholar 

  83. Carson DA, Chen PP, Kipps TJ. New roles for rheumatoid factor. J Clin Invest. 1991;87(2):379–83 [Research Support, U.S. Gov’t, P.H.S. Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Edwards JC, Cambridge G. Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes. Rheumatology. 2001;40(2):205–11 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  85. Edwards JC, Cambridge G. Prospects for B-cell-targeted therapy in autoimmune disease. Rheumatology. 2005;44(2):151–6 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  86. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88 [Clinical Trial, Phase II Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  87. Goetz M, Atreya R, Ghalibafian M, Galle PR, Neurath MF. Exacerbation of ulcerative colitis after rituximab salvage therapy. Inflamm Bowel Dis. 2007;13(11):1365–8 [Case Reports].

    Article  PubMed  Google Scholar 

  88. Dass S, Vital EM, Emery P. Development of psoriasis after B cell depletion with rituximab. Arthritis Rheum. 2007;56(8):2715–8 [Case Reports].

    Article  CAS  PubMed  Google Scholar 

  89. Westermann J, Pabst R. Lymphocyte subsets in the blood: a diagnostic window on the lymphoid system? Immunol Today. 1990;11(11):406–10 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  90. McKay J, Chwalinska-Sadowska H, Boling E, Valente R, Limanni A, Racewicz A, et al. Belimumab (BmAb), a fully human monoclonal antibody to B-lymphocyte stimulator (BLyS), combined with standard of care therapy reduces the signs and symptoms of rheumatoid arthritis in a heterogenous subject population. Arthritis Rheum. 2005;52(9):S710–1.

    Google Scholar 

  91. Mackay F, Schneider P, Rennert P, Browning J. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64.

    Article  CAS  PubMed  Google Scholar 

  92. Ng LG, Sutherland APR, Newton R, Qian F, Cachero TG, Scott ML, et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol. 2004;173(2):807–17.

    Article  CAS  PubMed  Google Scholar 

  93. Carbonatto M, Yu P, Bertolino M, Vigna E, Steidler S, Fava L, et al. Nonclinical safety, pharmacokinetics, and pharmacodynamics of atacicept. Toxicol Sci. 2008;105(1):200–10 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  94. Tak PP, Thurlings RM, Dimic A, Mircetic V, Rischmueller M, Nasanov E, et al. A phase Ib study to investigate atacicept (TACI-Ig) in patients with rheumatoid arthritis. Ann Rheum Dis. 2007;66:A10.

    Google Scholar 

  95. Fleischmann R, Wei N, Shaw M, Birbara C, Anand B, Gujrathi S, et al. BR3-Fc phase I study: safety, pharmacokinetics (PK) and pharmacodynamic (PD) effects of a novel BR3-Fc fusion protein in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54(9):S229–30.

    Google Scholar 

  96. Desjarlais JR, Lazar GA, Zhukovsky EA, Chu SY. Optimizing engagement of the immune system by anti-tumor antibodies: an engineer’s perspective. Drug Discov Today. 2007;12(21–22):898–910 [Review].

    Article  CAS  PubMed  Google Scholar 

  97. Snir A, Kessel A, Haj T, Rosner I, Slobodin G, Toubi E. Anti-IL-6 receptor antibody (tocilizumab): a B cell targeting therapy. Clin Exp Rheumatol. 2011;29(4):697–700.

    CAS  PubMed  Google Scholar 

  98. Toubi E, Nussbaum S, Staun-Ram E, Snir A, Melamed D, Hayardeny L, et al. Laquinimod modulates B cells and their regulatory effects on T cells in multiple sclerosis. J Neuroimmunol. 2012;251(1–2):45–54.

    Article  CAS  PubMed  Google Scholar 

  99. Vadasz Z, Haj T, Kessel A, Toubi E. B-regulatory cells in autoimmunity and immune mediated inflammation. FEBS Lett. 2013;587(13):2074–8.

    Article  CAS  PubMed  Google Scholar 

  100. Tennakoon DK, Mehta RS, Ortega SB, Bhoj V, Racke MK, Karandikar NJ. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol. 2006;176(11):7119–29.

    Article  CAS  PubMed  Google Scholar 

  101. Lalive PH, Neuhaus O, Benkhoucha M, Burger D, Hohlfeld R, Zamvil SS, et al. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs. 2011;25(5):401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Putheti P, Soderstrom M, Link H, Huang YM. Effect of glatiramer acetate (Copaxone) on CD4+CD25high T regulatory cells and their IL-10 production in multiple sclerosis. J Neuroimmunol. 2003;144(1–2):125–31.

    Article  CAS  PubMed  Google Scholar 

  103. Kala M, Miravalle A, Vollmer T. Recent insights into the mechanism of action of glatiramer acetate. J Neuroimmunol. 2011;235(1–2):9–17.

    Article  CAS  PubMed  Google Scholar 

  104. Towfighi A, Saver JL. Stroke declines from third to fourth leading cause of death in the United States historical perspective and challenges ahead. Stroke. 2011;42(8):2351–5.

    Article  PubMed  Google Scholar 

  105. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23.

    Article  CAS  PubMed  Google Scholar 

  106. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Executive summary: heart disease and stroke statistics-2014 update a report from the American Heart Association. Circulation. 2014;129(3):399–410.

    Article  PubMed  Google Scholar 

  107. Schroeter M, Jander S, Witte OW, Stoll G. Local immune-responses in the rat cerebral-cortex after middle cerebral-artery occlusion. J Neuroimmunol. 1994;55(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  108. del Zoppo GJ, Becker KJ, Hallenbeck JM. Inflammation after stroke—is it harmful? Arch Neurol. 2001;58(4):669–72.

    PubMed  Google Scholar 

  109. Lagrange P, Romero IA, Minn A, Revest PA. Transendothelial permeability changes induced by free radicals in an in vitro model of the blood–brain barrier. Free Radic Biol Med. 1999;27(5–6):667–72.

    Article  CAS  PubMed  Google Scholar 

  110. Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med. 2005;39(1):51–70.

    Article  CAS  PubMed  Google Scholar 

  111. Aktas O, Ullrich O, Infante-Duarte C, Nitsch R, Zipp F. Neuronal damage in brain inflammation. Arch Neurol. 2007;64(2):185–9 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  Google Scholar 

  112. Jin R, Yang GJ, Li GH. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87(5):779–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim JY, Kawabori M, Yenari MA. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets. Curr Med Chem. 2014;21(18):2076–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Konsman JP, Drukarch B, Van Dam AM. (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci. 2007;112(1):1–25 [Review].

    Article  CAS  PubMed  Google Scholar 

  115. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808 [Research Support, N.I.H., Extramural Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005;23(4):344–6 [Comment Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  117. Yilmaz G, Granger DN. Leukocyte recruitment and ischemic brain injury. Neuromol Med. 2010;12(2):193–204 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  Google Scholar 

  118. Liesz A, Dalpke A, Mracsko E, Antoine DJ, Roth S, Zhou W, et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J Neurosci. 2015;35(2):583–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Hallenbeck J. Adaptive immunity—introduction. Stroke. 2007;38(2):768–9.

    Article  Google Scholar 

  120. Schwartz M, Kipnis J. Autoimmunity on alert: naturally occurring regulatory CD4(+)CD25(+) T cells as part of the evolutionary compromise between a ‘need’ and a ‘risk’. Trends Immunol. 2002;23(11):530–4.

    Article  CAS  PubMed  Google Scholar 

  121. Gee JM, Kalil A, Shea C, Becker KJ. Lymphocytes—potential mediators of postischemic injury and neuroprotection. Stroke. 2007;38(2):783–8.

    Article  PubMed  Google Scholar 

  122. Planas AM, Gomez-Choco M, Urra X, Gorina R, Caballero M, Chamorro A. Brain-derived antigens in lymphoid tissue of patients with acute stroke. J Immunol. 2012;188(5):2156–63 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  123. Becker KJ, McCarron RM, Ruetzler C, Laban O, Sternberg E, Flanders KC, et al. Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc Natl Acad Sci U S A. 1997;94(20):10873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis. 2013;28(3):375–86 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chavele KM, Ehrenstein MR. Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett. 2011;585(23):3603–10 [Review].

    Article  CAS  PubMed  Google Scholar 

  126. Kitamura D, Roes J, Kuhn R, Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 1991;350(6317):423–6 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  127. Ren XF, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci. 2011;31(23):8556–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H. Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice. Metab Brain Dis. 2014;29(1):59–73 [Evaluation Studies Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  129. Ibarra A, Avendano H, Cruz Y. Copolymer-1 (Cop-1) improves neurological recovery after middle cerebral artery occlusion in rats. Neurosci Lett. 2007;425(2):110–3.

    Article  CAS  PubMed  Google Scholar 

  130. Kraft P, Gobel K, Meuth SG, Kleinschnitz C. Glatiramer acetate does not protect from acute ischemic stroke in mice. Exp Transl Stroke Med. 2014;6(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Poittevin M, Deroide N, Azibani F, Delcayre C, Giannesini C, Levy BI, et al. Glatiramer Acetate administration does not reduce damage after cerebral ischemia in mice. J Neuroimmunol. 2013;254(1–2):55–62.

    Article  CAS  PubMed  Google Scholar 

  132. McColl BW, Rothwell NJ, Allan SM. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci. 2007;27(16):4403–12.

    Article  CAS  PubMed  Google Scholar 

  133. Elkind MS, Cheng J, Rundek T, Boden-Albala B, Sacco RL. Leukocyte count predicts outcome after ischemic stroke: the Northern Manhattan Stroke Study. J Stroke Cerebrovasc Dis. 2004;13(5):220–7.

    Article  PubMed  Google Scholar 

  134. Meisel C, Schwab JM, Prass K, Meisel A, Dirnag U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005;6(10):775–86.

    Article  CAS  PubMed  Google Scholar 

  135. Denes A, McColl BW, Leow-Dyke SF, Chapman KZ, Humphreys NE, Grencis RK, et al. Experimental stroke-induced changes in the bone marrow reveal complex regulation of leukocyte responses. J Cereb Blood Flow Metab. 2011;31(4):1036–50.

    Article  CAS  PubMed  Google Scholar 

  136. Jickling GC, Xu HC, Stamova B, Ander BP, Zhan XH, Tian YF, et al. Signatures of cardioembolic and large-vessel ischemic stroke. Ann Neurol. 2010;68(5):681–92.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Harms H, Reimnitz P, Bohner G, Werich T, Klingebiel R, Meisel C, et al. Influence of stroke localization on autonomic activation, immunodepression, and post-stroke infection. Cerebrovasc Dis. 2011;32(6):552–60 [Clinical Trial, Phase II, Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  138. Chamorro A, Amaro S, Vargas M, Obach V, Cervera A, Torres F, et al. Interleukin 10, monocytes and increased risk of early infection in ischaemic stroke. J Neurol Neurosurg Psychiatry. 2006;77(11):1279–81 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Waje-Andreassen U, Krakenes J, Ulvestad E, Thomassen L, Myhr KM, Aarseth J, et al. IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol Scand. 2005;111(6):360–5 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  140. Liesz A, Hagmann S, Zschoche C, Adamek J, Zhou W, Sun L, et al. The spectrum of systemic immune alterations after murine focal ischemia: immunodepression versus immunomodulation. Stroke. 2009;40(8):2849–58 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  141. Kohm AP, Sanders VM. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev. 2001;53(4):487–525.

    CAS  PubMed  Google Scholar 

  142. Mracsko E, Liesz A, Karcher S, Zorn M, Bari F, Veltkamp R. Differential effects of sympathetic nervous system and hypothalamic-pituitary–adrenal axis on systemic immune cells after severe experimental stroke. Brain Behav Immun. 2014;41:200–9.

    Article  CAS  PubMed  Google Scholar 

  143. Elenkov IJ, Chrousos GP. Stress system—organization, physiology and immunoregulation. Neuroimmunomodulation. 2006;13(5–6):257–67 [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  144. Barer DH, Cruickshank JM, Ebrahim SB, Mitchell JR. Low dose beta blockade in acute stroke (“BEST” trial): an evaluation. Br Med J (Clin Res Ed). 1988;296(6624):737–41.

    Article  CAS  Google Scholar 

  145. Phelan C, Alaigh V, Fortunato G, Staff I, Sansing L. Effect of beta-adrenergic antagonists on in-hospital mortality after ischemic stroke. J Stroke Cerebrovasc Dis. 2015;8:1998–2004.

    Article  Google Scholar 

  146. Maier IL, Karch A, Mikolajczyk R, Bahr M, Liman J. Effect of beta-blocker therapy on the risk of infections and death after acute stroke—a historical cohort study. PLoS One. 2015;10(2):e0116836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Wolfe CDA. The impact of stroke. Br Med Bull. 2000;56(2):275–86.

    Article  CAS  PubMed  Google Scholar 

  148. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5(2):146–56.

    Article  CAS  PubMed  Google Scholar 

  149. Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–44.

    Article  CAS  PubMed  Google Scholar 

  150. Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li SL. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol. 2005;193(2):291–311.

    Article  CAS  PubMed  Google Scholar 

  151. Li Y, Jiang N, Powers C, Chopp M. Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rats. Stroke. 1998;29(9):1972–80.

    Article  CAS  PubMed  Google Scholar 

  152. Lu AG, Tang Y, Ran RQ, Clark JF, Aronow BJ, Sharp FR. Genomics of the periinfarction cortex after focal cerebral ischemia. J Cereb Blood Flow Metab. 2003;23(7):786–810.

    Article  CAS  PubMed  Google Scholar 

  153. De Winter F, Oudega M, Lankhorst AJ, Hamers FP, Blits B, Ruitenberg MJ, et al. Injury-induced class 3 semaphorin expression in the rat spinal cord. Exp Neurol. 2002;175(1):61–75.

    Article  PubMed  CAS  Google Scholar 

  154. Bundesen LQ, Scheel TA, Bregman BS, Kromer LF. Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci. 2003;23(21):7789–800.

    CAS  PubMed  Google Scholar 

  155. Hunt D, Coffin RS, Prinjha RK, Campbell G, Anderson PN. Nogo-A expression in the intact and injured nervous system. Mol Cell Neurosci. 2003;24(4):1083–102.

    Article  CAS  PubMed  Google Scholar 

  156. Jones LL, Margolis RU, Tuszynski MH. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol. 2003;182(2):399–411.

    Article  CAS  PubMed  Google Scholar 

  157. Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M, Parada LF. Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci U S A. 2005;102(30):10694–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Morgenstern DA, Asher RA, Fawcett JW. Chondroitin sulphate proteoglycans in the CNS injury response. Prog Brain Res. 2002;137:313–32.

    Article  CAS  PubMed  Google Scholar 

  159. Napieralski JA, Butler AK, Chesselet MF. Anatomical and functional evidence for lesion-specific sprouting of corticostriatal input in the adult rat. J Comp Neurol. 1996;373(4):484–97.

    Article  CAS  PubMed  Google Scholar 

  160. Carmichael ST, Wei L, Rovainen CM, Woolsey TA. New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis. 2001;8(5):910–22 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  161. Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, et al. Extensive cortical rewiring after brain injury. J Neurosci. 2005;25(44):10167–79 [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  162. Carmichael ST, Chesselet MF. Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci. 2002;22(14):6062–70.

    CAS  PubMed  Google Scholar 

  163. Ishii H, Kubo T, Kumanogoh A, Yamashita T. Th1 cells promote neurite outgrowth from cortical neurons via a mechanism dependent on semaphorins. Biochem Biophys Res Commun. 2010;402(1):168–72.

    Article  CAS  PubMed  Google Scholar 

  164. Wang HJ, Hu JG, Shen L, Wang R, Wang QY, Zhang C, et al. Passive immunization with myelin basic protein activated T cells suppresses axonal dieback but does not promote axonal regeneration following spinal cord hemisection in adult rats. Int J Neurosci. 2012;122(8):458–65.

    Article  CAS  PubMed  Google Scholar 

  165. Al-Izki S, Pryce G, Hankey DJ, Lidster K, von Kutzleben SM, Browne L, et al. Lesional-targeting of neuroprotection to the inflammatory penumbra in experimental multiple sclerosis. Brain. 2014;137(Pt 1):92–108.

    Article  PubMed  Google Scholar 

  166. Reick C, Ellrichmann G, Thone J, Scannevin RH, Saft C, Linker RA, et al. Neuroprotective dimethyl fumarate synergizes with immunomodulatory interferon beta to provide enhanced axon protection in autoimmune neuroinflammation. Exp Neurol. 2014;257:50–6.

    Article  CAS  PubMed  Google Scholar 

  167. Tanabe S, Yamashita T. Repulsive guidance molecule-a is involved in Th17-cell-induced neurodegeneration in autoimmune encephalomyelitis. Cell Rep. 2014;9(4):1459–70.

    Article  CAS  PubMed  Google Scholar 

  168. Yu D, Cook MC, Shin DM, Silva DG, Marshall J, Toellner KM, et al. Axon growth and guidance genes identify T-dependent germinal centre B cells. Immunol Cell Biol. 2008;86(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  169. Zhang Y, Da RR, Guo W, Ren HM, Hilgenberg LG, Sobel RA, et al. Axon reactive B cells clonally expanded in the cerebrospinal fluid of patients with multiple sclerosis. J Clin Immunol. 2005;25(3):254–64.

    Article  CAS  PubMed  Google Scholar 

  170. Ankeny DP, Popovich PG. B cells and autoantibodies: complex roles in CNS injury. Trends Immunol. 2010;31(9):332–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG. Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem. 2006;99(4):1073–87.

    Article  CAS  PubMed  Google Scholar 

  172. Fontoura P, Ho PP, DeVoss J, Zheng B, Lee BJ, Kidd BA, et al. Immunity to the extracellular domain of Nogo-A modulates experimental autoimmune encephalomyelitis. J Immunol. 2004;173(11):6981–92 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  173. Vincent FB, Morand EF, Schneider P, Mackay F. The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 2014;10(6):365–73 [Review].

    Article  CAS  PubMed  Google Scholar 

  174. Edling AE, Nanavati T, Johnson JM, Tuohy VK. Human and murine lymphocyte neurotrophin expression is confined to B cells. J Neurosci Res. 2004;77(5):709–17.

    Article  CAS  PubMed  Google Scholar 

  175. Fauchais AL, Lalloue F, Lise MC, Boumediene A, Preud’homme JL, Vidal E, et al. Role of endogenous brain-derived neurotrophic factor and sortilin in B cell survival. J Immunol. 2008;181(5):3027–38.

    Article  CAS  PubMed  Google Scholar 

  176. Begum-Haque S, Christy M, Ochoa-Reparaz J, Nowak EC, Mielcarz D, Hague A, et al. Augmentation of regulatory B cell activity in experimental allergic encephalomyelitis by glatiramer acetate. J Neuroimmunol. 2011;232(1–2):136–44.

    Article  CAS  PubMed  Google Scholar 

  177. Barba R, Martinez-Espinosa S, Rodriguez-Garcia E, Pondal M, Vivancos J, Del Ser T. Poststroke dementia: clinical features and risk factors. Stroke. 2000;31(7):1494–501.

    Article  CAS  PubMed  Google Scholar 

  178. Leys D, Henon H, Mackowiak-Cordoliani MA, Pasquier F. Poststroke dementia. Lancet Neurol. 2005;4(11):752–9.

    Article  PubMed  Google Scholar 

  179. Bejot Y, Aboa-Eboule C, Durier J, Rouaud O, Jacquin A, Ponavoy E, et al. Prevalence of early dementia after first-ever stroke: a 24-year population-based study. Stroke. 2011;42(3):607–12.

    Article  PubMed  Google Scholar 

  180. Savva GM, Stephan BC. Alzheimer’s Society Vascular Dementia Systematic Review G. Epidemiological studies of the effect of stroke on incident dementia: a systematic review. Stroke. 2010;41(1):e41–6.

    Article  PubMed  Google Scholar 

  181. Offner H, Hurn PD. A novel hypothesis: regulatory B lymphocytes shape outcome from experimental stroke. Transl Stroke Res. 2012;3(3):324–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gidday JM. Pharmacologic preconditioning: translating the promise. Transl Stroke Res. 2010;1(1):19–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7(6):437–48.

    Article  CAS  PubMed  Google Scholar 

  184. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36. [Research Support, U.S. Gov’t, P.H.S.

    Article  CAS  PubMed  Google Scholar 

  185. Serafin A, Fernandez-Zabalegui L, Prats N, Wu ZY, Rosello-Catafau J, Peralta C. Ischemic preconditioning: tolerance to hepatic ischemia-reperfusion injury. Histol Histopathol. 2004;19(1):281–9 [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  186. Yoon YE, Lee KS, Choi KH, Kim KH, Yang SC, Han WK. Preconditioning strategies for kidney ischemia reperfusion injury: implications of the “time-window” in remote ischemic preconditioning. PLoS One. 2015;10(4):e0124130 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Erling Junior N, Montero EF, Sannomiya P, Poli-de-Figueiredo LF. Local and remote ischemic preconditioning protect against intestinal ischemic/reperfusion injury after supraceliac aortic clamping. Clinics. 2013;68(12):1548–54 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  188. Kocman EA, Ozatik O, Sahin A, Guney T, Kose AA, Dag I, et al. Effects of ischemic preconditioning protocols on skeletal muscle ischemia-reperfusion injury. J Surg Res. 2015;193(2):942–52 [Comparative Study Evaluation Studies Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  189. Roth S, Li B, Rosenbaum PS, Gupta H, Goldstein IM, Maxwell KM, et al. Preconditioning provides complete protection against retinal ischemic injury in rats. Invest Ophthalmol Vis Sci. 1998;39(5):777–85 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  190. Poinsatte K, Selvaraj UM, Ortega SB, Plautz EJ, Kong X, Gidday JM, et al. Quantification of neurovascular protection following repetitive hypoxic preconditioning and transient middle cerebral artery occlusion in mice. J Vis Exp. 2015;99:e52675.

    PubMed  Google Scholar 

  191. Hu X, Lu Y, Zhang Y, Li Y, Jiang L. Remote ischemic preconditioning improves spatial learning and memory ability after focal cerebral ischemia-reperfusion in rats. Perfusion. 2013;28(6):546–51.

    Article  CAS  PubMed  Google Scholar 

  192. Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, et al. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol. 2014;114:58–83 [Research Suppo[Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review].

    Article  PubMed  Google Scholar 

  193. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8(4):398–412 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kariko K, Weissman D, Welsh FA. Inhibition of toll-like receptor and cytokine signaling—a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab. 2004;24(11):1288–304 [Research Support, U.S. Gov’t, P.H.S. Review].

    Article  CAS  PubMed  Google Scholar 

  195. Garcia-Bonilla L, Benakis C, Moore J, Iadecola C, Anrather J. Immune mechanisms in cerebral ischemic tolerance. Front Neurosci. 2014;8:44 [Review].

    Article  PubMed  PubMed Central  Google Scholar 

  196. Liu XQ, Sheng R, Qin ZH. The neuroprotective mechanism of brain ischemic preconditioning. Acta Pharmacol Sin. 2009;30(8):1071–80 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP. Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience. 2009;158(3):1007–20 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  198. Stowe AM, Wacker BK, Cravens PD, Perfater JL, Li MK, Hu R, et al. CCL2 upregulation triggers hypoxic preconditioning-induced protection from stroke. J Neuroinflammation. 2012;9:33 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Curry A, Guo M, Patel R, Liebelt B, Sprague S, Lai Q, et al. Exercise pre-conditioning reduces brain inflammation in stroke via tumor necrosis factor-alpha, extracellular signal-regulated kinase 1/2 and matrix metalloproteinase-9 activity. Neurol Res. 2010;32(7):756–62 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  200. Endres M, Fan G, Hirt L, Fujii M, Matsushita K, Liu X, et al. Ischemic brain damage in mice after selectively modifying BDNF or NT4 gene expression. J Cereb Blood Flow Metab. 2000;20(1):139–44 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  201. Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401–10 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  202. Prass K, Scharff A, Ruscher K, Lowl D, Muselmann C, Victorov I, et al. Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke. 2003;34(8):1981–6 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  203. Wacker BK, Park TS, Gidday JM. Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. Stroke. 2009;40(10):3342–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab. 2002;22(4):393–403.

    Article  CAS  PubMed  Google Scholar 

  205. Gao CJ, Niu L, Ren PC, Wang W, Zhu C, Li YQ, et al. Hypoxic preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest through regulation of delta opioid receptor system. Neuroscience. 2012;202:352–62 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  206. Zhang J, Qian H, Zhao P, Hong SS, Xia Y. Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor. Stroke. 2006;37(4):1094–9 [Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  207. Fan YY, Hu WW, Dai HB, Zhang JX, Zhang LY, He P, et al. Activation of the central histaminergic system is involved in hypoxia-induced stroke tolerance in adult mice. J Cereb Blood Flow Metab. 2011;31(1):305–14 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  208. Yu S, Zhao T, Guo M, Fang H, Ma J, Ding A, et al. Hypoxic preconditioning up-regulates glucose transport activity and glucose transporter (GLUT1 and GLUT3) gene expression after acute anoxic exposure in the cultured rat hippocampal neurons and astrocytes. Brain Res. 2008;1211:22–9 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  209. Arthur PG, Lim SC, Meloni BP, Munns SE, Chan A, Knuckey NW. The protective effect of hypoxic preconditioning on cortical neuronal cultures is associated with increases in the activity of several antioxidant enzymes. Brain Res. 2004;1017(1–2):146–54 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  210. Bickler PE, Fahlman CS, Gray J, McKleroy W. Inositol 1,4,5-triphosphate receptors and NAD(P)H mediate Ca2+ signaling required for hypoxic preconditioning of hippocampal neurons. Neuroscience. 2009;160(1):51–60 [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Liu J, Narasimhan P, Yu F, Chan PH. Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin. Stroke. 2005;36(6):1264–9 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  212. Bu X, Zhang N, Yang X, Liu Y, Du J, Liang J, et al. Proteomic analysis of cPKCbetaII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. J Neurochem. 2011;117(2):346–56 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  213. Zhang N, Yin Y, Han S, Jiang J, Yang W, Bu X, et al. Hypoxic preconditioning induced neuroprotection against cerebral ischemic injuries and its cPKCgamma-mediated molecular mechanism. Neurochem Int. 2011;58(6):684–92 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  214. Lin AM, Dung SW, Chen CF, Chen WH, Ho LT. Hypoxic preconditioning prevents cortical infarction by transient focal ischemia-reperfusion. Ann N Y Acad Sci. 2003;993:168–78 [discussion 95-6], [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  215. Stowe AM, Altay T, Freie AB, Gidday JM. Repetitive hypoxia extends endogenous neurovascular protection for stroke. Ann Neurol. 2011;69(6):975–85 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Monson NL, Ortega SB, Ireland SJ, Meeuwissen AJ, Chen D, Plautz EJ, et al. Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke. J Neuroinflammation. 2014;11:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Cepok S, Jacobsen M, Schock S, Omer B, Jaekel S, Boddeker I, et al. Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain. 2001;124(Pt 11):2169–76 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  218. Tadmor T, Bari A, Sacchi S, Marcheselli L, Liardo EV, Avivi I, et al. Monocyte count at diagnosis is a prognostic parameter in diffuse large B-cell lymphoma: results from a large multicenter study involving 1191 patients in the pre- and post-rituximab era. Haematologica. 2014;99(1):125–30 [Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol. 2009;9(9):609–17 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kitaev MI, Tokhtabaev AG. T-and B-lymphocytes in adaptation to high altitude. Kosm Biol Aviakosm Med. 1981;15(3):87–9.

    CAS  PubMed  Google Scholar 

  221. Serebrovskaya TV, Nikolsky IS, Nikolska VV, Mallet RT, Ishchuk VA. Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt Med Biol. 2011;12(3):243–52 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Faeh D, Gutzwiller F, Bopp M. Swiss National Cohort Study G. Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation. 2009;120(6):495–501 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  223. Egan KJ, Janssen H, Sena ES, Longley L, Speare S, Howells DW, et al. Exercise reduces infarct volume and facilitates neurobehavioral recovery: results from a systematic review and meta-analysis of exercise in experimental models of focal ischemia. Neurorehabil Neural Repair. 2014;28(8):800–12 [Meta-Analysis Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  Google Scholar 

  224. Noble EG, Moraska A, Mazzeo RS, Roth DA, Olsson MC, Moore RL, et al. Differential expression of stress proteins in rat myocardium after free wheel or treadmill run training. J Appl Physiol. 1999;86(5):1696–701 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  225. Ke Z, Yip SP, Li L, Zheng XX, Tong KY. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model. PLoS One. 2011;6(2):e16643 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Hayes K, Sprague S, Guo M, Davis W, Friedman A, Kumar A, et al. Forced, not voluntary, exercise effectively induces neuroprotection in stroke. Acta Neuropathol. 2008;115(3):289–96 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Stevenson JR, Kreiling JA, Taylor R. Effects of corticosterone on responses of murine splenic B and T cells to phytohemagglutinin, concanavalin A, and lipopolysaccharide. Immunol Invest. 1989;18(8):951–60.

    Article  CAS  PubMed  Google Scholar 

  228. Kim SE, Ko IG, Kim BK, Shin MS, Cho S, Kim CJ, et al. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol. 2010;45(5):357–65 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  229. Leasure JL, Jones M. Forced and voluntary exercise differentially affect brain and behavior. Neuroscience. 2008;156(3):456–65 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  230. van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25(38):8680–5 [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Ding Y, Li J, Luan X, Ding YH, Lai Q, Rafols JA, et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 2004;124(3):583–91 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  232. Zhang F, Wu Y, Jia J. Exercise preconditioning and brain ischemic tolerance. Neuroscience. 2011;177:170–6 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  233. Kinni H, Guo M, Ding JY, Konakondla S, Dornbos 3rd D, Tran R, et al. Cerebral metabolism after forced or voluntary physical exercise. Brain Res. 2011;1388:48–55.

    Article  CAS  PubMed  Google Scholar 

  234. Ding YH, Ding Y, Li J, Bessert DA, Rafols JA. Exercise pre-conditioning strengthens brain microvascular integrity in a rat stroke model. Neurol Res. 2006;28(2):184–9 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  235. Ding YH, Li J, Yao WX, Rafols JA, Clark JC, Ding Y. Exercise preconditioning upregulates cerebral integrins and enhances cerebrovascular integrity in ischemic rats. Acta Neuropathol. 2006;112(1):74–84 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  236. Liebelt B, Papapetrou P, Ali A, Guo M, Ji X, Peng C, et al. Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience. 2010;166(4):1091–100 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  237. Chaudhry K, Rogers R, Guo M, Lai Q, Goel G, Liebelt B, et al. Matrix metalloproteinase-9 (MMP-9) expression and extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation in exercise-reduced neuronal apoptosis after stroke. Neurosci Lett. 2010;474(2):109–14.

    Article  CAS  PubMed  Google Scholar 

  238. Ding YH, Young CN, Luan X, Li J, Rafols JA, Clark JC, et al. Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol. 2005;109(3):237–46 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  239. Ding YH, Mrizek M, Lai Q, Wu Y, Reyes Jr R, Li J, et al. Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study. Curr Neurovasc Res. 2006;3(4):263–71 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  240. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63 [Review].

    PubMed  Google Scholar 

  241. Elphick GF, Greenwood BN, Campisi J, Fleshner M. Increased serum nIgM in voluntarily physically active rats: a potential role for B-1 cells. J Appl Physiol. 2003;94(2):660–7 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  242. Elphick GF, Wieseler-Frank J, Greenwood BN, Campisi J, Fleshner M. B-1 cell (CD5+/CD11b+) numbers and nIgM levels are elevated in physically active vs. sedentary rats. J Appl Physiol. 2003;95(1):199–206.

    Article  PubMed  Google Scholar 

  243. Douglass JH. The effects of physical tracing on the immunological response in mice. J Sports Med Phys Fitness. 1974;14(1):48–54.

    CAS  PubMed  Google Scholar 

  244. Liu YG, Wang SY. The enhancing effect of exercise on the production of antibody to Salmonella typhi in mice. Immunol Lett. 1987;14(2):117–20 [Comparative Study].

    Article  CAS  PubMed  Google Scholar 

  245. Suzuki K, Tagami K. Voluntary wheel-running exercise enhances antigen-specific antibody-producing splenic B cell response and prolongs IgG half-life in the blood. Eur J Appl Physiol. 2005;94(5–6):514–9 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  246. Alevizos A, Lentzas J, Kokkoris S, Mariolis A, Korantzopoulos P. Physical activity and stroke risk. Int J Clin Pract. 2005;59(8):922–30 [Review].

    Article  CAS  PubMed  Google Scholar 

  247. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.

    Article  CAS  PubMed  Google Scholar 

  248. Diep L, Kwagyan J, Kurantsin-Mills J, Weir R, Jayam-Trouth A. Association of physical activity level and stroke outcomes in men and women: a meta-analysis. J Womens Health. 2010;19(10):1815–22 [Comparative Study Meta-Analysis Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  Google Scholar 

  249. Lee CD, Folsom AR, Blair SN. Physical activity and stroke risk: a meta-analysis. Stroke. 2003;34(10):2475–81 [Meta-Analysis Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  Google Scholar 

  250. Stroud N, Mazwi TM, Case LD, Brown Jr RD, Brott TG, Worrall BB, et al. Prestroke physical activity and early functional status after stroke. J Neurol Neurosurg Psychiatry. 2009;80(9):1019–22 [Multicenter Study Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Pradillo JM, Fernandez-Lopez D, Garcia-Yebenes I, Sobrado M, Hurtado O, Moro MA, et al. Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem. 2009;109(1):287–94.

    Article  CAS  PubMed  Google Scholar 

  252. Leung PY, Stevens SL, Packard AE, Lessov NS, Yang T, Conrad VK, et al. Toll-like receptor 7 preconditioning induces robust neuroprotection against stroke by a novel type I interferon-mediated mechanism. Stroke. 2012;43(5):1383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM. Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res. 1997;748(1–2):267–70.

    Article  CAS  PubMed  Google Scholar 

  254. Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MP. Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke. 2004;35(11):2576–81.

    Article  CAS  PubMed  Google Scholar 

  255. Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS, Boule JL, et al. Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab. 2008;28(5):1040–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Stevens SL, Vartanian KB, Stenzel-Poore MP. Reprogramming the response to stroke by preconditioning. Stroke. 2014;45(8):2527–31.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, et al. Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab. 2007;27(10):1663–74.

    Article  CAS  PubMed  Google Scholar 

  258. Lastres-Becker I, Cartmell T, Molina-Holgado F. Endotoxin preconditioning protects neurones from in vitro ischemia: role of endogenous IL-1beta and TNF-alpha. J Neuroimmunol. 2006;173(1–2):108–16.

    Article  CAS  PubMed  Google Scholar 

  259. Ahmed SH, He YY, Nassief A, Xu J, Xu XM, Hsu CY, et al. Effects of lipopolysaccharide priming on acute ischemic brain injury. Stroke. 2000;31(1):193–9.

    Article  CAS  PubMed  Google Scholar 

  260. Bastide M, Gele P, Petrault O, Pu Q, Caliez A, Robin E, et al. Delayed cerebrovascular protective effect of lipopolysaccharide in parallel to brain ischemic tolerance. J Cereb Blood Flow Metab. 2003;23(4):399–405.

    Article  CAS  PubMed  Google Scholar 

  261. Dawson DA, Furuya K, Gotoh J, Nakao Y, Hallenbeck JM. Cerebrovascular hemodynamics and ischemic tolerance: lipopolysaccharide-induced resistance to focal cerebral ischemia is not due to changes in severity of the initial ischemic insult, but is associated with preservation of microvascular perfusion. J Cereb Blood Flow Metab. 1999;19(6):616–23.

    Article  CAS  PubMed  Google Scholar 

  262. Stevens SL, Leung PY, Vartanian KB, Gopalan B, Yang T, Simon RP, et al. Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci. 2011;31(23):8456–63 [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Vartanian KB, Stevens SL, Marsh BJ, Williams-Karnesky R, Lessov NS, Stenzel-Poore MP. LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury. J Neuroinflammation. 2011;8:140 [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Zimmermann C, Ginis I, Furuya K, Klimanis D, Ruetzler C, Spatz M, et al. Lipopolysaccharide-induced ischemic tolerance is associated with increased levels of ceramide in brain and in plasma. Brain Res. 2001;895(1–2):59–65.

    Article  CAS  PubMed  Google Scholar 

  265. Yao H, Ma R, Yang L, Hu G, Chen X, Duan M, et al. MiR-9 promotes microglial activation by targeting MCPIP1. Nat Commun. 2014;5:4386.

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Lampropoulou V, Calderon-Gomez E, Roch T, Neves P, Shen P, Stervbo U, et al. Suppressive functions of activated B cells in autoimmune diseases reveal the dual roles of Toll-like receptors in immunity. Immunol Rev. 2010;233(1):146–61.

    Article  CAS  PubMed  Google Scholar 

  267. Ishikawa M, Vowinkel T, Stokes KY, Arumugam TV, Yilmaz G, Nanda A, et al. CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation. 2005;111(13):1690–6.

    Article  CAS  PubMed  Google Scholar 

  268. Garlichs CD, Kozina S, Fateh-Moghadam S, Handschu R, Tomandl B, Stumpf C, et al. Upregulation of CD40-CD40 ligand (CD154) in patients with acute cerebral ischemia. Stroke. 2003;34(6):1412–8.

    Article  CAS  PubMed  Google Scholar 

  269. Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, et al. Trial Watch: experimental toll-like receptor agonists for cancer therapy. Oncoimmunology. 2012;1(5):699–716.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Bahjat FR, Williams-Karnesky RL, Kohama SG, West GA, Doyle KP, Spector MD, et al. Proof of concept: pharmacological preconditioning with a toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab. 2011;31(5):1229–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Krieg AM. Therapeutic potential of toll-like receptor 9 activation. Nat Rev Drug Discov. 2006;5(6):471–84.

    Article  CAS  PubMed  Google Scholar 

  272. Lopez-Collazo E, del Fresno C. Pathophysiology of endotoxin tolerance: mechanisms and clinical consequences. Crit Care. 2013;17(6):242.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Liu, Jie, et al. Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-α and ceramide. American Journal of Physiology-Cell Physiology 278.1 (2000): C144–C153.

    Google Scholar 

  274. Zwagerman, Nathan, et al. Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurological research 32.2 (2010): 123–126.

    Google Scholar 

  275. Guo, Miao, et al. Preischemic induction of TNF-α by physical exercise reduces blood–brain barrier dysfunction in stroke. Journal of Cerebral Blood Flow & Metabolism 28.8 (2008): 1422–1430.

    Google Scholar 

  276. Wacker, Bradley K., Jennifer L. Perfater, and Jeffrey M. Gidday. Hypoxic preconditioning induces stroke tolerance in mice via a cascading HIF, sphingosine kinase, and CCL2 signaling pathway. Journal of neurochemistry123.6 (2012): 954–962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Stowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Selvaraj, U.M., Poinsatte, K., Stowe, A.M. (2016). B-Cells in Stroke and Preconditioning-Induced Protection Against Stroke. In: Chen, J., Zhang, J., Hu, X. (eds) Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-32337-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32337-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32335-0

  • Online ISBN: 978-3-319-32337-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics