Skip to main content

Biometrology Guidelines for the In Vivo Assessment of Transepidermal Water Loss and Skin Hydration in Nonclinical Settings

  • Living reference work entry
  • First Online:
Measuring the Skin

Abstract

It is becoming evident that assessment of skin exposure to physical and chemical stressors in workplaces should be accompanied by the assessment of skin barrier function at the time of exposure. “Real-life” occupational (nonclinical) environments can be highly variable and difficult to control which presents unique measurement challenges not encountered in clinical settings. Based on existing clinical guidelines, published data, and our own experiences, we developed guidelines and best practices for the in vivo measurement of transepidermal water loss (TEWL) and skin hydration in nonclinical settings, with specific emphasis placed on occupational environments (workplaces) as a worst-case scenario. This chapter presents these guidelines as well as amendments since initial publication thereof. Key elements of these guidelines are (i) recognition and minimization, to the extent feasible, of the influences of relevant endogenous-, exogenous-, environmental-, and measurement/instrumentation-related factors; (ii) recommendation of instruments to be used for measurement of in particular TEWL; (iii) recommendation of standardized reporting of measurement results; and (iv) accurate disclosure of notable deviations from the guidelines. It is envisaged that these guidelines will promote skin barrier assessment, particularly in occupational environments, and consequentially enable intercomparison of future study results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

RH:

Relative humidity

SC:

Stratum corneum

TEWL:

Transepidermal water loss

References

  • Agache P. Stratum corneum histophysiology. In: Agache P, Humbert P, editors. Measuring the skin. Germany: Springer; 2004. p. 95–100.

    Chapter  Google Scholar 

  • Barel AO, Clarys P. Measurement of epidermal capacitance. In: Serup J, Jemec GBE, Grove GL, editors. Handbook of non-invasive methods and the skin. 2nd ed. Boca Raton: CRC Press; 2006. p. 337–44.

    Chapter  Google Scholar 

  • Barel AO, Clarys P. Skin capacitance. In: Berardesca E et al., editors. Non invasive diagnostic techniques in clinical dermatology. Berlin: Springer; 2014. p. 357–65.

    Chapter  Google Scholar 

  • Bauer A, Kelterer D, Bartsch R, Stadeler M, Elsner P. Skin protection in the food industry. Curr Probl Dermatol. 2007;34:138–50.

    Article  CAS  PubMed  Google Scholar 

  • Berardesca E. EEMCO guidance for the assessment of stratum corneum hydration: electrical methods. Skin Res Technol. 1997;3:126–32.

    Article  Google Scholar 

  • Berndt U, Hinnen U, Iliev D, Elsner P. Is occupational irritant contact dermatitis predictable by cutaneous bioengineering methods? Results of the Swiss metalworkers’ eczema study (PROMETES). Dermatology. 1999;198:351–4.

    Article  CAS  PubMed  Google Scholar 

  • Brandner JM, Behne MJ, Huesing B, Moll I. Caffeine improves barrier function in male skin. Int J Cosmet Sci. 2006;28:343–7.

    Article  CAS  PubMed  Google Scholar 

  • C&K. Derma unit SSC3 information and operation instructions. Germany: CK Electronic GmbH; 2004.

    Google Scholar 

  • Chou T-C, Shih T-S, Tsai J-C, Wu J-D, Sheu H-M, Chang H-Y. Effect of occupational exposure to rayon manufacturing chemicals on skin barrier to evaporative water loss. J Occup Health. 2004;46:410–7.

    Article  CAS  PubMed  Google Scholar 

  • Chou T-C, Lin K-H, Wang S-M, Lee C-W, Su S-B, Shih T-S, Chang H-Y. Transepidermal water loss and skin capacitance alterations among workers in an ultra-low humidity environment. Arch Dermatol Res. 2005;196:489–95.

    Article  Google Scholar 

  • Chou T-C, Wang PC, Wu JD, Sheu SC, Wu TN, Chang HY, Shih TS. Skin barrier alteration associated with chromium exposure and smoking amongst cement workers. Epidemiology. 2008;19:S142–3.

    Google Scholar 

  • Coenraads P-J, Lee J, Pinnagoda J. Changes in water vapor loss from the skin of metal industry workers monitored during exposure to oils. Scand J Work Environ Health. 1986;12:494–8.

    Article  CAS  PubMed  Google Scholar 

  • Cohen JC, Hartman DG, Garofalo MJ, Basehoar A, Raynor B, Ashbrenner E, Akin FJ. Comparison of closed chamber and open chamber evaporimetry. Skin Res Technol. 2009;15:51–4.

    Article  CAS  PubMed  Google Scholar 

  • Crowther JM, Sieg A, Blenkiron P, Marcott C, Matts PJ, Kaczvinsky JR, Rawlings AV. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br J Dermatol. 2008;159:567–77.

    CAS  PubMed  Google Scholar 

  • Darlenski R, Sassning S, Tsankov N, Fluhr JW. Non-invasive in vivo methods for investigation of the skin barrier. Eur J Pham Biopharm. 2009;72:295–303.

    Article  CAS  Google Scholar 

  • De Paepe K, Houben E, Adam R, Wiesemann F, Rogiers V. Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs. the open chamber Tewameter®. Skin Res Technol. 2005;11:61–9.

    Article  PubMed  Google Scholar 

  • Du Plessis JL, Eloff FC, Badenhorst CJ, Olivier J, Laubsher PJ, van Aarde MN, Franken A. Assessment of dermal exposure and skin condition of workers exposed to nickel at a South African base metal refinery. Ann Occup Hyg. 2010;54:23–30.

    Article  PubMed  Google Scholar 

  • Du Plessis JL, Eloff FC, Engelbrecht S, Laubsher PJ, van Aarde MN, Franken A. Dermal exposure and changes in skin barrier function of base metal refinery workers co-exposed to cobalt and nickel. Occup Health South Afr. 2013a;19:6–12.

    Google Scholar 

  • Du Plessis J, Stefaniak AB, Eloff FC, John SM, Agner T, Chou TC, Nixon R, Steiner MFC, Franken A, Kudla I, Holness DL. Guidelines for the in vivo assessment of skin properties in workplace settings: part 2. Transepidermal water loss and skin hydration. Skin Res Technol. 2013b;19:265–78.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fluhr JW, Darlenski R. Transepidermal water loss (TEWL). In: Berardesca E et al., editors. Non invasive diagnostic techniques in clinical dermatology. Berlin: Springer; 2014. p. 353–6.

    Chapter  Google Scholar 

  • Fluhr JW, Darlenski R, Angelova-Fisher I, Tsankov N, Basketter D. Skin irritation and sensitisation: mechanisms and new approaches for risk assessment. Skin Pharmacol Physiol. 2008;21:124–35.

    Article  CAS  PubMed  Google Scholar 

  • Gabard B, Treffel P. Transepidermal water loss. In: Agache P, Humbert P, editors. Measuring the skin. Germany: Springer; 2004. p. 553–64.

    Chapter  Google Scholar 

  • Goh CL, Gan SL. Efficacies of a barrier cream and an afterwork emollient cream against cutting fluid dermatitis in metalworkers: a prospective study. Contact Dermatitis. 1994;31:176–80.

    Article  CAS  PubMed  Google Scholar 

  • Hachem JP, De Paepe K, Sterckx G, Kaufman L, Rogiers V, Roseeu D. Evaluation of biophysical and clinical parameters of skin barrier function among hospital workers. Contact Dermatitis. 2002;46:220–3.

    Article  PubMed  Google Scholar 

  • Heinrich U, Koop U, Leneveu-Duchemin MC, Osterrieder S, Bielfeldt C. Multicentre comparison of skin hydration in terms of physical-, physiological- and product-dependent parameters by the capacitative method (Corneometer CM 825). Int J Cosmet Sci. 2003;25:45–53.

    Article  CAS  PubMed  Google Scholar 

  • Imhof RE, De Jesus ME, Xiao P, Ciortea LI, Berg EP. Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance. Int J Cosmet Sci. 2009;31:97–118.

    Article  CAS  PubMed  Google Scholar 

  • Imhof B, Xiao P, Angelova-Fischer I. TEWL, closed chamber methods: aquaflux and vapometer. In: Berardesca E et al., editors. Non invasive diagnostic techniques in clinical dermatology. Berlin: Springer; 2014. p. 345–52.

    Chapter  Google Scholar 

  • John SM. Primary and acquired sensitive skin. In: Berardesca E, Fluhr J, Maibach HI, editors. The sensitive skin syndrome. New York: Taylor & Francis; 2006. p. 129–47.

    Google Scholar 

  • John SM, Uter W, Schwanitz HJ. Relevance of multi-parametric skin bioengineering in a prospectively-followed cohort of junior hairdressers. Contact Dermatitis. 2000;43:161–168.

    Article  CAS  PubMed  Google Scholar 

  • Kezic S, Nielsen JB. Absorption of chemicals through compromised skin. Int Arch Occup Environ Health. 2009;82:677–88.

    Article  CAS  PubMed  Google Scholar 

  • Korting HC, Hübner K, Greiner K, Hamm G, Braun-Falco O. Differences in the skin surface pH and bacterial microflora due to long-term application of synthetic detergent preparations of pH 5.5 and pH 7.0. Results of a cross-over trial in healthy volunteers. Acta Derm Venereol. 1990;70:429–31.

    CAS  PubMed  Google Scholar 

  • Kottner J, Ludriksone L, Bartels NG, Blume-Peytavi U. Do repeated skin barrier measurements influence each other’s results? An explorative study. Skin Pharmacol Physiol. 2014;27:90–6.

    Article  PubMed  Google Scholar 

  • Kütting B, Uter W, Baumeister T, Schaller B, Weistenhöffer W, Drexler H. Non-invasive bioengineering methods in an intervention study in 1020 male metal workers: results and implications for occupational dermatology. Contact Dermatitis. 2010;62:272–8.

    Article  PubMed  Google Scholar 

  • Levin J, Maibach H. The correlation between transepidermal water loss and percutaneous absorption: an overview. J Control Release. 2005;103:291–9.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JB. Percutaneous penetration through slightly damaged skin. Arch Dermatol Res. 2005;296:560–7.

    Article  PubMed  Google Scholar 

  • Nuutinen J. Mesurement of transepidermal water loss by closed-chamber systems. In: Serup J, Jemec GBE, Grove GL, editors. Handbook of non-invasive methods and the skin. 2nd ed. Boca Raton: CRC Press; 2006. p. 411–20.

    Google Scholar 

  • Ohman H, Vahlquist A. The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis. A clue to the molecular origin of the “acid skin mantle”? J Invest Dermatol. 1998;111:674–7.

    Article  CAS  PubMed  Google Scholar 

  • Packham CL, Packham HE, Packham HM, Cherrington A. Investigation into different skin conditions in certain occupations. J R Soc Prom Health. 2005;125:181–5.

    Article  Google Scholar 

  • Pinnagoda J, Tupker RA, Agner T, Serup J. Guidelines for transepidermal water loss (TEWL) measurement. Contact Dermatitis. 1990;22:164–78.

    Article  CAS  PubMed  Google Scholar 

  • Pirot F, Falson F. Skin barrier function. In: Agache P, Humbert P, editors. Measuring the skin. Germany: Springer; 2004. p. 513–24.

    Chapter  Google Scholar 

  • Proksch E, Brandner JM, Jensen J-M. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72.

    Article  PubMed  Google Scholar 

  • Rawlings AV. Ethnic skin types: are there differences in skin structure and function? Int J Cosmet Sci. 2006;28:79–93.

    Article  CAS  PubMed  Google Scholar 

  • Raynor B, Ashbrenner E, Garofalo M, Cohen J, Akin F. The practical dynamics of transepidermal water loss (TEWL): pharmacokinetic modeling and the limitations of closed-chamber evaporimetry. Skin Res Tech. 2004;10:3. Abstract.

    Google Scholar 

  • Rogiers V. EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol. 2001;14:117–28.

    Article  CAS  PubMed  Google Scholar 

  • Roskos KV, Guy RH. Assessment of skin barrier function using transepidermal water loss: effect of age. Pharmacol Res. 1989;6:949–53.

    Article  CAS  Google Scholar 

  • Smit HA, van Rijssen A, Vandenbroucke JP, Coenraads PJ. Susceptibility to and incidence of hand dermatitis in a cohort of apprentice hairdressers and nurses. Scand J Work Environ Health. 1994;20:113–21.

    Article  CAS  PubMed  Google Scholar 

  • Stefaniak AB, Du Plessis JL, John SM, Eloff FC, Agner T, Chou TC, Nixon R, Steiner MFC, Kudla I, Holness DL. Guidelines for the in vivo assessment of skin properties in workplace settings: part 1. pH. Skin Res Technol. 2013;19:59–68.

    Article  PubMed Central  PubMed  Google Scholar 

  • Steiner M, Dick FD, Ormerod A, Semple SE, Murphy E, Ayres JG. Teledermatology in occupational skin health surveillance – diagnostic accuracy and reliability. Dermatitis. 2011;22:295.

    Google Scholar 

  • Tupker RA, Pinnagoda J. Measurement of transepidermal water loss by semi open systems. In: Serup J, Jemec GBE, Grove GL, editors. Handbook of non-invasive methods and the skin. 2nd ed. Boca Raton: CRC Press; 2006. p. 383–92.

    Chapter  Google Scholar 

  • Voegeli D. The effect of washing and drying practices on skin barrier function. J Wound Ostomy Continence Nurs. 2008;35:84–90.

    Article  PubMed  Google Scholar 

  • Wilhelm KP, Cua AB, Maibach HI. Skin aging. Effect on transpeidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content. Arch Dermatol. 1991;127:1806–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhai H, Maibach HI. Occlusion vs. skin barrier function. Skin Res Technol. 2002;8:1–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Mention of a specific product or company does not constitute endorsement by the Centers for Disease Control and Prevention. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of NIOSH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan L. Du Plessis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Du Plessis, J.L., Stefaniak, A.B. (2015). Biometrology Guidelines for the In Vivo Assessment of Transepidermal Water Loss and Skin Hydration in Nonclinical Settings. In: Humbert, P., Maibach, H., Fanian, F., Agache, P. (eds) Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-26594-0_128-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26594-0_128-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26594-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics