Skip to main content

Epigenetic Control of Genes Involved in Cancer Initiation and Progression

  • Chapter
  • First Online:
Epigenetic Advancements in Cancer

Abstract

Aberrant changes in gene expression that regulate the cell cycle, cell division and cell death are major contributing factors to the genesis of tumors. Tumors arising from heritable epigenetic changes governed by epigenetic mechanisms are treatable by the use of compounds that reverses the epigenetic change, as the DNA sequence remains unaltered. DNA methylation and histone modifications are primary mechanisms that induce epigenetic changes and are well studied. Micro RNAs, which are about 20–25 nucleotides long RNA sequence, are also emerging as important epigenetic regulators in tumorigenesis. As evident in many cancers, tumors are heterogeneous in nature and therefore a common epigenetic signature that dictates the onset or the progression of the diseases is hard to determine. In addition to tumor heterogeneity, epigenetic processes are highly dynamic and therefore rather than single epigenetic events, the combination of epigenetic patterns obviate the changes. However, most tumors strongly exhibit epigenetic dysfunctions of genes crucial to the cell cycle. The analysis of epigenetic changes, degree of the change and reversal of epigenetic alterations is important to the diagnosis, prognosis and therapeutics of various cancers. The goal of this chapter is to discuss genes that are susceptible to aberrant epigenetic modifications and the influence of the altered epigenetic states in tumorigenesis. The assessment and detection of epigenetic patterns, degree of methylation of genes involved in tumorigenesis as potential biomarkers for the diagnosis and prognosis of the disease will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM19:

A Disintegrin And Metalloproteinase Domain 19

ADAM12-L:

A Disintegrin And Metalloproteinase Domain 12

AICDA:

Activation-Induced Cytidine Deaminase

APC:

Adenomatous polyposis coli

AKT:

v-akt murine thymoma

ALX4:

Aristaless-Like Homeobox 4

ATG7:

Autophagy 7-Like

BCL2L11:

BCL2-Like 11

BRCA1:

Breast cancer 1

BRCA2:

Breast cancer 2

CRC:

Colorectal cancer

c-Myc:

V-myc avian myelocytomatosis

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

DNMT1:

DNA methyltransferase 1

DNMT3A:

DNA methyltransferase 3A

DNMT3B:

DNA methyltransferase 3B

EpCAM:

Epithelial cell adhesion molecule

ER:

Estrogen receptor

E2F1:

E2F transcription factor 1

ERG:

ETS-related gene

EOC:

Epithelial ovarian cancers

ERK:

Extracellular signal-regulated kinases

ESCC:

Esophageal squamous cell carcinomas

ERK5:

Extracellular-signal-regulated kinase 5

Gli3:

GLI Family Zinc Finger 3

hTERT:

Human telomerase reverse transcriptase

HATs:

Histone acetylases

HCC:

Hepatocellular carcinomas

HNF4 γ:

Hepatocyte nuclear factor 4 receptor γ

HDACs:

Histone deacetylases

H3-K9:

Histone H3 Lysine 9

H3-K27:

Histone H3 lysine 27

INK4A:

Inhibitor of Kinases

IGFBP2:

Insulin-Like Growth Factor Binding Protein 2

ITCH:

Itchy E3 Ubiquitin Protein Ligase

KPNB1:

Karyopherin Subunit Beta-1

LIN28:

Lin-28 homolog A

MMP3:

Matrix Metallopeptidase 3

mTOR:

Mechanistic Target Of Rapamycin

MERTK:

MER Receptor Tyrosine Kinase

MSP:

Methyl sensitive PCR

MAPK:

Mitogen activated protein kinases

Mekk2:

Mitogen-Activated Protein Kinase Kinase 2

Mekk5:

Mitogen-Activated Protein Kinase Kinase 5

Mad1:

Mitotic arrest deficient 1

MDR-1:

Multidrug resistance-1

MiRs:

Micro RNAs

MTS-1:

Multiple tumor suppressor

NPC:

Nasopharyngeal carcinomas

NSCLC:

Non-small cell lung carcinoma

Notch 1:

Notch Homolog 1

NR2F2:

Nuclear Receptor Subfamily 2 Group F, Member 2

oncomiRs:

Oncogene

PI3K:

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase

PTEN:

Phosphatase and Tensin homologue deleted from chromosome 10

PCa:

Prostate cancer

PIPNC1:

PTEN Induced Putative Kinase 1

PAK4:

P21 (CDKN1A)-Activated Kinase 4

RASSF:

Ras-association domain family

Rb:

Retinoblastoma protein

RECK:

Reversion-Inducing-Cysteine-Rich Protein with Kazal Motifs

SPARC:

Secreted Protein Acidic, Cysteine-Rich

SEPT9:

Septin 9

SMAD4:

SMAD Family Member 4

SNAI1:

Snail Family Zinc Finger

TIMP:

Tissue Inhibitor of Metalloproteinases

TP53:

Tumor protein p53

tsmiRs:

Tumor suppressor

ZEB 1:

zinc finger E-box binding homeobox 1

ZEB 2:

zinc finger E-box binding homeobox 1

References

  1. Yang L, et al. Mutations of p53 and KRAS activate NF-kappaB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett. 2015;357(2):520–6.

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, et al. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett. 2015;356(2 Pt A):197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou WQ, et al. Expressions of survivin, P16(INK4a), COX-2, and Ki-67 in cervical cancer progression reveal the potential clinical application. Eur J Gynaecol Oncol. 2015;36(1):62–8.

    CAS  PubMed  Google Scholar 

  4. Zhu Z, et al. Mutations in the p16 gene in DMBA-induced pancreatic intraepithelial neoplasia and pancreatic cancer in rats. Hepatobiliary Pancreat Dis Int. 2015;14(2):208–14.

    Article  PubMed  Google Scholar 

  5. Fey MF. p53, myc, APC, hMSH2, ras, etc. in colorectal cancer—a never ending story! Ann Oncol. 1995;6(10):961–2.

    CAS  PubMed  Google Scholar 

  6. Spandidos DA, et al. ras, c-myc and c-erbB-2 oncoproteins in human breast cancer. Anticancer Res. 1989;9(5):1385–93.

    CAS  PubMed  Google Scholar 

  7. Saldana-Meyer R, Recillas-Targa F. Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics. 2011;6(9):1068–77.

    Article  CAS  PubMed  Google Scholar 

  8. Soto-Reyes E, Recillas-Targa F. Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines. Oncogene. 2010;29(15):2217–27.

    Article  CAS  PubMed  Google Scholar 

  9. He M, et al. Epigenetic regulation of Myc on retinoic acid receptor beta and PDLIM4 in RWPE1 cells. Prostate. 2009;69(15):1643–50.

    Article  CAS  PubMed  Google Scholar 

  10. Xiong X, et al. Down-regulated miRNA-214 induces a cell cycle G1 arrest in gastric cancer cells by up-regulating the PTEN protein. Pathol Oncol Res. 2011;17(4):931–7.

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.

    Article  CAS  PubMed  Google Scholar 

  12. Bird AP. The relationship of DNA methylation to cancer. Cancer Surv. 1996;28:87–101.

    CAS  PubMed  Google Scholar 

  13. Gautrey HE, et al. DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. FASEB J. 2014;28(7):3261–72.

    Article  CAS  PubMed  Google Scholar 

  14. Leppert S, Matarazzo MR. De novo DNMTs and DNA methylation: novel insights into disease pathogenesis and therapy from epigenomics. Curr Pharm Des. 2014;20(11):1812–8.

    Article  CAS  PubMed  Google Scholar 

  15. Svedruzic ZM. Dnmt1 structure and function. Prog Mol Biol Transl Sci. 2011;101:221–54.

    Article  CAS  PubMed  Google Scholar 

  16. Huhns M, et al. PTEN mutation, loss of heterozygosity, promoter methylation and expression in colorectal carcinoma: two hits on the gene? Oncol Rep. 2014;31(5):2236–44.

    PubMed  Google Scholar 

  17. Matros E, et al. BRCA1 promoter methylation in sporadic breast tumors: relationship to gene expression profiles. Breast Cancer Res Treat. 2005;91(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  18. Valls-Bautista C, et al. hTERT methylation is necessary but not sufficient for telomerase activity in colorectal cells. Oncol Lett. 2011;2(6):1257–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Devereux TR, et al. DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res. 1999;59(24):6087–90.

    CAS  PubMed  Google Scholar 

  20. Baumann K. Chromatin. Drivers of nuclear organization. Nat Rev Mol Cell Biol. 2015;16(2):67.

    Article  PubMed  CAS  Google Scholar 

  21. Chakravarthy S, et al. Structure and dynamic properties of nucleosome core particles. FEBS Lett. 2005;579(4):895–8.

    Article  CAS  PubMed  Google Scholar 

  22. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998;12(5):599–606.

    Article  CAS  PubMed  Google Scholar 

  24. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  25. Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26(37):5310–8.

    Article  CAS  PubMed  Google Scholar 

  26. Blenkiron C, Miska EA. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet. 2007;16 Spec No 1:R106–13.

    Google Scholar 

  27. Krishnan K, et al. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA. 2013;19(2):230–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Taniguchi T. MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle. 2013;12(1):32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang R, et al. Functional role of miR-34 family in human cancer. Curr Drug Targets. 2013;14(10):1185–91.

    Article  CAS  PubMed  Google Scholar 

  30. Liggett Jr WH, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16(3):1197–206.

    CAS  PubMed  Google Scholar 

  31. Wang X, et al. P300 plays a role in p16(INK4a) expression and cell cycle arrest. Oncogene. 2008;27(13):1894–904.

    Article  CAS  PubMed  Google Scholar 

  32. Klajic J, et al. DNA methylation status of key cell-cycle regulators such as CDKNA2/p16 and CCNA1 correlates with treatment response to doxorubicin and 5-fluorouracil in locally advanced breast tumors. Clin Cancer Res. 2014;20(24):6357–66.

    Article  CAS  PubMed  Google Scholar 

  33. Omura-Minamisawa M, et al. p16/p14(ARF) cell cycle regulatory pathways in primary neuroblastoma: p16 expression is associated with advanced stage disease. Clin Cancer Res. 2001;7(11):3481–90.

    CAS  PubMed  Google Scholar 

  34. Rayess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16. Int J Cancer. 2012;130(8):1715–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Watanabe T, et al. Promoter hypermethylation and homozygous deletion of the p14ARF and p16INK4a genes in oligodendrogliomas. Acta Neuropathol. 2001;101(3):185–9.

    CAS  PubMed  Google Scholar 

  36. Venza M, et al. Epigenetic regulation of p14(ARF) and p16(INK4A) expression in cutaneous and uveal melanoma. Biochim Biophys Acta. 2015;1849(3):247–56.

    Article  CAS  PubMed  Google Scholar 

  37. Blanco D, et al. Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway. Neoplasia. 2007;9(10):840–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong DJ, et al. Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol Cell Biol. 1999;19(8):5642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amatori S, et al. DNA demethylating antineoplastic strategies: a comparative point of view. Genes Cancer. 2010;1(3):197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li X, et al. p16INK4A hypermethylation is associated with hepatitis virus infection, age, and gender in hepatocellular carcinoma. Clin Cancer Res. 2004;10(22):7484–9.

    Article  CAS  PubMed  Google Scholar 

  41. Meng CF, Zhu XJ, Peng G, Dai DQ. Promoter histone H3 lysine 9 di-methylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells. Oncol Rep. 2009;22(5):1221–7.

    CAS  PubMed  Google Scholar 

  42. Peng D, Zhang H, Sun G. The relationship between P16 gene promoter methylation and gastric cancer: a meta-analysis based on Chinese patients. J Cancer Res Ther. 2014;10(Suppl):292–5.

    PubMed  Google Scholar 

  43. Tsujie M, et al. Expression of tumor suppressor gene p16(INK4) products in primary gastric cancer. Oncology. 2000;58(2):126–36.

    Article  CAS  PubMed  Google Scholar 

  44. Yoruker EE, et al. Promoter and histone methylation and p16(INK4A) gene expression in colon cancer. Exp Ther Med. 2012;4(5):865–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Burri N, et al. Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer. Lab Invest. 2001;81(2):217–29.

    Article  CAS  PubMed  Google Scholar 

  46. Malhotra P, et al. Aberrant promoter methylation of p16 in colorectal adenocarcinoma in North Indian patients. World J Gastrointest Oncol. 2010;2(7):295–303.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Migliori V, et al. Arginine/lysine-methyl/methyl switches: biochemical role of histone arginine methylation in transcriptional regulation. Epigenomics. 2010;2(1):119–37.

    Article  CAS  PubMed  Google Scholar 

  48. Huang S, Litt M, Felsenfeld G. Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev. 2005;19(16):1885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bauer UM, et al. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep. 2002;3(1):39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eissenberg JC, Shilatifard A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol. 2010;339(2):240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Snowden AW, et al. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol. 2002;12(24):2159–66.

    Article  CAS  PubMed  Google Scholar 

  52. Kondo Y, Shen L, Issa JP. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol. 2003;23(1):206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gonzalez-Quevedo R, et al. Differential impact of p16 inactivation by promoter methylation in non-small cell lung and colorectal cancer: clinical implications. Int J Oncol. 2004;24(2):349–55.

    CAS  PubMed  Google Scholar 

  54. Chen YZ, et al. Relationships between p16 gene promoter methylation and clinicopathologic features of colorectal cancer: a meta-analysis of 27 cohort studies. DNA Cell Biol. 2014;33(10):729–38.

    Article  CAS  PubMed  Google Scholar 

  55. Jhanwar-Uniyal M. BRCA1 in cancer, cell cycle and genomic stability. Front Biosci. 2003;8:s1107–17.

    Article  CAS  PubMed  Google Scholar 

  56. Welcsh PL, King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 2001;10(7):705–13.

    Article  CAS  PubMed  Google Scholar 

  57. Stefansson OA, et al. BRCA1 epigenetic inactivation predicts sensitivity to platinum-based chemotherapy in breast and ovarian cancer. Epigenetics. 2012;7(11):1225–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Birgisdottir V, et al. Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res. 2006;8(4):R38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Shukla V, et al. BRCA1 affects global DNA methylation through regulation of DNMT1. Cell Res. 2010;20(11):1201–15.

    Article  CAS  PubMed  Google Scholar 

  60. Saldanha SN, Tollefsbol TO. Pathway modulations and epigenetic alterations in ovarian tumorbiogenesis. J Cell Physiol. 2014;229(4):393–406.

    Article  CAS  PubMed  Google Scholar 

  61. Cho YH, et al. Prognostic significance of gene-specific promoter hypermethylation in breast cancer patients. Breast Cancer Res Treat. 2012;131(1):197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Esteller M, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92(7):564–9.

    Article  CAS  PubMed  Google Scholar 

  63. Truong PK, et al. BRCA1 promoter hypermethylation signature for early detection of breast cancer in the Vietnamese population. Asian Pac J Cancer Prev. 2014;15(22):9607–10.

    Article  PubMed  Google Scholar 

  64. Xu X, et al. BRCA1 promoter methylation is associated with increased mortality among women with breast cancer. Breast Cancer Res Treat. 2009;115(2):397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krasteva ME, et al. Breast cancer patients with hypermethylation in the promoter of BRCA1 gene exhibit favorable clinical status. Neoplasma. 2012;59(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  66. Bal A, et al. BRCA1-methylated sporadic breast cancers are BRCA-like in showing a basal phenotype and absence of ER expression. Virchows Arch. 2012;461(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  67. Vos MD, Clark GJ. RASSF family proteins and Ras transformation. Methods Enzymol. 2006;407:311–22.

    Article  CAS  PubMed  Google Scholar 

  68. Rajalingam K, et al. Ras oncogenes and their downstream targets. Biochim Biophys Acta. 2007;1773(8):1177–95.

    Article  CAS  PubMed  Google Scholar 

  69. Djos A, et al. The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma. Mol Cancer. 2012;11:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci. 2007;120(Pt 18):3163–72.

    Article  CAS  PubMed  Google Scholar 

  71. Cooper WN, et al. Epigenetic regulation of the ras effector/tumour suppressor RASSF2 in breast and lung cancer. Oncogene. 2008;27(12):1805–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mezzanotte JJ, et al. RASSF6 exhibits promoter hypermethylation in metastatic melanoma and inhibits invasion in melanoma cells. Epigenetics. 2014;9(11):1496–503.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Matallanas D, et al. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell. 2007;27(6):962–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shi DT, et al. Association of RASSF1A promoter methylation with gastric cancer risk: a meta-analysis. Tumour Biol. 2014;35(2):943–8.

    Article  CAS  PubMed  Google Scholar 

  75. Yaqinuddin A, et al. Frequent DNA hypermethylation at the RASSF1A and APC gene loci in prostate cancer patients of Pakistani origin. ISRN Urol. 2013;2013:627249.

    PubMed  PubMed Central  Google Scholar 

  76. Liu L, et al. Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene. 2002;21(44):6835–40.

    Article  CAS  PubMed  Google Scholar 

  77. Ge YZ, et al. The association between RASSF1A promoter methylation and prostate cancer: evidence from 19 published studies. Tumour Biol. 2014;35(4):3881–90.

    Article  CAS  PubMed  Google Scholar 

  78. Gilbert R, et al. Life course sun exposure and risk of prostate cancer: population-based nested case-control study and meta-analysis. Int J Cancer. 2009;125(6):1414–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hagrass HA, et al. Methylation status and protein expression of RASSF1A in breast cancer patients. Mol Biol Rep. 2014;41(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  80. Wu Y, et al. Aberrant methylation of RASSF2A in tumors and plasma of patients with epithelial ovarian cancer. Asian Pac J Cancer Prev. 2014;15(3):1171–6.

    Article  PubMed  Google Scholar 

  81. Zhang X, et al. Aberrant promoter methylation and silencing of RASSF2A gene in cervical cancer. J Obstet Gynaecol Res. 2014;40(5):1375–81.

    Article  CAS  PubMed  Google Scholar 

  82. Lu D, et al. Epigenetic silencing of RASSF10 promotes tumor growth in esophageal squamous cell carcinoma. Discov Med. 2014;17(94):169–78.

    CAS  PubMed  Google Scholar 

  83. Li Z, et al. RASSF10 is an epigenetically silenced tumor suppressor in gastric cancer. Oncol Rep. 2014;31(4):1661–8.

    CAS  PubMed  Google Scholar 

  84. Wang Y, et al. RASSF10 is epigenetically inactivated and induces apoptosis in lung cancer cell lines. Biomed Pharmacother. 2014;68(3):321–6.

    Article  CAS  PubMed  Google Scholar 

  85. Sun H, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 1999;96(11):6199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dillon LM, Miller TW. Therapeutic targeting of cancers with loss of PTEN function. Curr Drug Targets. 2014;15(1):65–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Goel A, et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res. 2004;64(9):3014–21.

    Article  CAS  PubMed  Google Scholar 

  88. Yajima I, et al. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT signaling in malignant melanoma progression and therapy. Dermatol Res Pract. 2012;2012:354191.

    PubMed  PubMed Central  Google Scholar 

  89. Mirmohammadsadegh A, et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res. 2006;66(13):6546–52.

    Article  CAS  PubMed  Google Scholar 

  90. Lee SH, et al. PTEN methylation dependent sinonasal mucosal melanoma. Cancer Res Treat. 2015 Mar 18. doi: 10.4143/crt.2014.356. [Epub ahead of print].

    Google Scholar 

  91. Sun Z, et al. PTEN gene is infrequently hypermethylated in human esophageal squamous cell carcinoma. Tumour Biol. 2015;36(8):5849–57.

    Article  CAS  PubMed  Google Scholar 

  92. Pan QF, et al. PTEN hypermethylation profiles of Chinese Kazakh patients with esophageal squamous cell carcinoma. Dis Esophagus. 2014;27(4):396–402.

    Article  CAS  PubMed  Google Scholar 

  93. Maeda M, et al. CpG hypermethylation contributes to decreased expression of PTEN during acquired resistance to gefitinib in human lung cancer cell lines. Lung Cancer. 2015;87(3):265–71.

    Article  PubMed  Google Scholar 

  94. Soria JC, et al. Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res. 2002;8(5):1178–84.

    CAS  PubMed  Google Scholar 

  95. Qi Q, et al. Promoter region methylation and loss of protein expression of PTEN and significance in cervical cancer. Biomed Rep. 2014;2(5):653–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Molinari F, Frattini M. Functions and regulation of the PTEN gene in colorectal cancer. Front Oncol. 2013;3:326.

    PubMed  PubMed Central  Google Scholar 

  97. Oodi A, et al. Expression of P16 cell cycle inhibitor in human cord blood CD34+ expanded cells following co-culture with bone marrow-derived mesenchymal stem cells. Hematology. 2012;17(6):334–40.

    Article  CAS  PubMed  Google Scholar 

  98. Chen J, et al. Molecular analysis of APC promoter methylation and protein expression in colorectal cancer metastasis. Carcinogenesis. 2005;26(1):37–43.

    Article  PubMed  CAS  Google Scholar 

  99. Penman GA, Leung L, Nathke IS. The adenomatous polyposis coli protein (APC) exists in two distinct soluble complexes with different functions. J Cell Sci. 2005;118(Pt 20):4741–50.

    Article  CAS  PubMed  Google Scholar 

  100. Caldwell CM, Kaplan KB. The role of APC in mitosis and in chromosome instability. Adv Exp Med Biol. 2009;656:51–64.

    Article  CAS  PubMed  Google Scholar 

  101. Lee BB, et al. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res. 2009;15(19):6185–91.

    Article  CAS  PubMed  Google Scholar 

  102. Yang JL, et al. Promoter methylation and mRNA expression of APC gene in MCF10 breast cancer model. Zhonghua Bing Li Xue Za Zhi. 2006;35(1):32–6.

    CAS  PubMed  Google Scholar 

  103. Chen YL, et al. Aberrant methylation of APC and Bikunin CpG islands in sporadic breast carcinomas. Zhonghua Yu Fang Yi Xue Za Zhi. 2007;41(Suppl):17–9.

    PubMed  Google Scholar 

  104. Henrique R, et al. High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res. 2007;13(20):6122–9.

    Article  CAS  PubMed  Google Scholar 

  105. Csepregi A, et al. APC promoter methylation and protein expression in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2008;134(5):579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shi H, et al. Association between RASSF1A promoter methylation and ovarian cancer: a meta-analysis. PLoS One. 2013;8(10), e76787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Newbold RF. The significance of telomerase activation and cellular immortalization in human cancer. Mutagenesis. 2002;17(6):539–50.

    Article  CAS  PubMed  Google Scholar 

  108. Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev. 2002;66(3):407–25, table of contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jakupciak JP, et al. Analytical validation of telomerase activity for cancer early detection: TRAP/PCR-CE and hTERT mRNA quantification assay for high-throughput screening of tumor cells. J Mol Diagn. 2004;6(3):157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sui X, et al. Epigenetic regulation of the human telomerase reverse transcriptase gene: a potential therapeutic target for the treatment of leukemia (Review). Oncol Lett. 2013;6(2):317–22.

    PubMed  PubMed Central  Google Scholar 

  111. Grochola LF, et al. Prognostic relevance of hTERT mRNA expression in ductal adenocarcinoma of the pancreas. Neoplasia. 2008;10(9):973–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis. 2003;24(7):1167–76.

    Article  CAS  PubMed  Google Scholar 

  113. Daniel M, Peek GW, Tollefsbol TO. Regulation of the human catalytic subunit of telomerase (hTERT). Gene. 2012;498(2):135–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Iliopoulos D, et al. Epigenetic regulation of hTERT promoter in hepatocellular carcinomas. Int J Oncol. 2009;34(2):391–9.

    CAS  PubMed  Google Scholar 

  115. Renaud S, et al. CTCF binds the proximal exonic region of hTERT and inhibits its transcription. Nucleic Acids Res. 2005;33(21):6850–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010;5(7), e11457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Atkinson SP, et al. Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res. 2005;65(17):7585–90.

    CAS  PubMed  Google Scholar 

  118. Mao B, et al. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int J Biochem Cell Biol. 2011;43(11):1573–81.

    Article  CAS  PubMed  Google Scholar 

  119. Nakayama M, et al. Hypomethylation status of CpG sites at the promoter region and overexpression of the human MDR1 gene in acute myeloid leukemias. Blood. 1998;92(11):4296–307.

    CAS  PubMed  Google Scholar 

  120. Enokida H, et al. CpG hypermethylation of MDR1 gene contributes to the pathogenesis and progression of human prostate cancer. Cancer Res. 2004;64(17):5956–62.

    Article  CAS  PubMed  Google Scholar 

  121. Akiyama K, et al. Tumor endothelial cells acquire drug resistance by MDR1 up-regulation via VEGF signaling in tumor microenvironment. Am J Pathol. 2012;180(3):1283–93.

    Article  CAS  PubMed  Google Scholar 

  122. Johnstone RW, Ruefli AA, Smyth MJ. Multiple physiological functions for multidrug transporter P-glycoprotein? Trends Biochem Sci. 2000;25(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  123. Henrique R, et al. Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer. BMC Genomics. 2013;14:898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Tada Y, et al. MDR1 gene overexpression and altered degree of methylation at the promoter region in bladder cancer during chemotherapeutic treatment. Clin Cancer Res. 2000;6(12):4618–27.

    CAS  PubMed  Google Scholar 

  125. Shannon BA, Iacopetta BJ. Methylation of the hMLH1, p16, and MDR1 genes in colorectal carcinoma: associations with clinicopathological features. Cancer Lett. 2001;167(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  126. Gao F, et al. Analysis of methylation status of the promoter of mdr1 gene in K562 and K562/DNR cells. Zhonghua Xue Ye Xue Za Zhi. 2004;25(5):293–5.

    CAS  PubMed  Google Scholar 

  127. Sharma D, Vertino PM. Epigenetic regulation of MDR1 gene in breast cancer: CpG methylation status dominates the stable maintenance of a silent gene. Cancer Biol Ther. 2004;3(6):549–50.

    Article  PubMed  Google Scholar 

  128. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  129. Lu J, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  CAS  PubMed  Google Scholar 

  130. He L, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol. 2004;339(2):327–35.

    Article  CAS  PubMed  Google Scholar 

  132. Jiang H, et al. Restoration of miR17/20a in solid tumor cells enhances the natural killer cell antitumor activity by targeting Mekk2. Cancer Immunol Res. 2014;2(8):789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lawrie CH. MicroRNAs and lymphomagenesis: a functional review. Br J Haematol. 2013;160(5):571–81.

    Article  CAS  PubMed  Google Scholar 

  134. O’Donnell KA, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–43.

    Article  PubMed  CAS  Google Scholar 

  135. Bandres E, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;5:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Diosdado B, et al. MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer. 2009;101(4):707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kandalam MM, et al. Oncogenic microRNA 17-92 cluster is regulated by epithelial cell adhesion molecule and could be a potential therapeutic target in retinoblastoma. Mol Vis. 2012;18:2279–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Chang TC, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40(1):43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Volinia S, et al. Reprogramming of miRNA networks in cancer and leukemia. Genome Res. 2010;20(5):589–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kao CJ, et al. miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene. 2014;33(19):2495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Baffa R, et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol. 2009;219(2):214–21.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang Q, et al. Role of microRNA-30c targeting ADAM19 in colorectal cancer. PLoS One. 2015;10(3), e0120698.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ouzounova M, et al. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics. 2013;14:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sousa JF, et al. miR-30-HNF4gamma and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach. Gut. 2015 Mar 23. pii: gutjnl-2014-308759. doi: 10.1136/gutjnl-2014-308759. [Epub ahead of print].

    Google Scholar 

  145. Nair VS, Maeda LS, Ioannidis JP. Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst. 2012;104(7):528–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhu Q, et al. miR-21 promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma. Oncol Rep. 2012;27(5):1660–8.

    CAS  PubMed  Google Scholar 

  147. Zhou L, et al. MicroRNA-21 regulates the migration and invasion of a stem-like population in hepatocellular carcinoma. Int J Oncol. 2013;43(2):661–9.

    CAS  PubMed  Google Scholar 

  148. Yan LX, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14(11):2348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang ZX, et al. MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res. 2011;42(4):281–90.

    Article  CAS  PubMed  Google Scholar 

  150. Giunti L, et al. Anti-miR21 oligonucleotide enhances chemosensitivity of T98G cell line to doxorubicin by inducing apoptosis. Am J Cancer Res. 2015;5(1):231–42.

    PubMed  PubMed Central  Google Scholar 

  151. Abue M, et al. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer. Int J Oncol. 2015;46(2):539–47. doi:10.3892/ijo.2014.2743.

    Google Scholar 

  152. Zhang H, et al. Diagnostic and prognostic value of microRNA-21 in colorectal cancer: an original study and individual participant data meta-analysis. Cancer Epidemiol Biomarkers Prev. 2014;23(12):2783–92.

    Article  CAS  PubMed  Google Scholar 

  153. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  154. Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol. 2007;1(1):26–41.

    Article  CAS  PubMed  Google Scholar 

  155. Vatandoost N, et al. Early detection of colorectal cancer: from conventional methods to novel biomarkers. J Cancer Res Clin Oncol. J Cancer Res Clin Oncol. 2015 Feb 17. [Epub ahead of print].

    Google Scholar 

  156. Kourea HP, Zolota V, Scopa CD. Targeted pathways in breast cancer: molecular and protein markers guiding therapeutic decisions. Curr Mol Pharmacol. 2014;7(1):4–21.

    Article  CAS  PubMed  Google Scholar 

  157. Cody 2nd DT, et al. Differential DNA methylation of the p16 INK4A/CDKN2A promoter in human oral cancer cells and normal human oral keratinocytes. Oral Oncol. 1999;35(5):516–22.

    Article  CAS  PubMed  Google Scholar 

  158. Nakahara Y, et al. Detection of p16 promoter methylation in the serum of oral cancer patients. Int J Oral Maxillofac Surg. 2006;35(4):362–5.

    Article  CAS  PubMed  Google Scholar 

  159. Shaw RJ, et al. Promoter methylation of P16, RARbeta, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer. 2006;94(4):561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Demokan S, et al. Promoter methylation and loss of p16(INK4a) gene expression in head and neck cancer. Head Neck. 2012;34(10):1470–5.

    Article  PubMed  Google Scholar 

  161. Jarmalaite S, et al. Aberrant p16 promoter methylation in smokers and former smokers with nonsmall cell lung cancer. Int J Cancer. 2003;106(6):913–8.

    Article  CAS  PubMed  Google Scholar 

  162. Zhang CY, et al. Relationship between promoter methylation of p16, DAPK and RAR beta genes and the clinical data of non-small cell lung cancer. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2011;28(1):23–8.

    PubMed  Google Scholar 

  163. Georgiou E, et al. Aberrant p16 promoter methylation among Greek lung cancer patients and smokers: correlation with smoking. Eur J Cancer Prev. 2007;16(5):396–402.

    Article  CAS  PubMed  Google Scholar 

  164. Celebiler Cavusoglu A, et al. Promoter methylation and expression changes of CDH1 and P16 genes in invasive breast cancer and adjacent normal breast tissue. Neoplasma. 2010;57(5):465–72.

    Article  CAS  PubMed  Google Scholar 

  165. Valenzuela MT, et al. Assessing the use of p16(INK4a) promoter gene methylation in serum for detection of bladder cancer. Eur Urol. 2002;42(6):622–8, discussion 628–30.

    Article  CAS  PubMed  Google Scholar 

  166. Jeong DH, et al. Promoter methylation of p16, DAPK, CDH1, and TIMP-3 genes in cervical cancer: correlation with clinicopathologic characteristics. Int J Gynecol Cancer. 2006;16(3):1234–40.

    Article  CAS  PubMed  Google Scholar 

  167. Jha AK, et al. p16(INK4a) and p15(INK4b) gene promoter methylation in cervical cancer patients. Oncol Lett. 2012;3(6):1331–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Nakayama H, et al. Molecular detection of p16 promoter methylation in the serum of recurrent colorectal cancer patients. Int J Cancer. 2003;105(4):491–3.

    Article  CAS  PubMed  Google Scholar 

  169. Wani HA, et al. Methylation profile of promoter region of p16 gene in colorectal cancer patients of Kashmir valley. J Biol Regul Homeost Agents. 2013;27(2):297–307.

    CAS  PubMed  Google Scholar 

  170. Nakayama H, et al. Molecular detection of p16 promoter methylation in the serum of colorectal cancer patients. Cancer Lett. 2002;188(1–2):115–9.

    Article  CAS  PubMed  Google Scholar 

  171. Zhao S, et al. MiR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PLoS One. 2015;10(3), e0120905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Wen SY, et al. miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene. 2015;34(6):717–25.

    Article  CAS  PubMed  Google Scholar 

  173. Lee KH, et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene. 2009;28(38):3360–70.

    Article  CAS  PubMed  Google Scholar 

  174. Zhang P, et al. Antitumor effects of pharmacological EZH2 inhibition on malignant peripheral nerve sheath tumor through the miR-30a and KPNB1 pathway. Mol Cancer. 2015;14(1):55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kalniete D, et al. High expression of miR-214 is associated with a worse disease-specific survival of the triple-negative breast cancer patients. Hered Cancer Clin Pract. 2015;13(1):7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Duhachek-Muggy S, Zolkiewska A. ADAM12-L is a direct target of the miR-29 and miR-200 families in breast cancer. BMC Cancer. 2015;15(1):93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Kutay H, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem. 2006;99(3):671–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hou J, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell. 2011;19(2):232–43.

    Article  CAS  PubMed  Google Scholar 

  179. Png KJ, et al. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature. 2012;481(7380):190–4.

    Article  CAS  Google Scholar 

  180. Fabbri M, et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011;305(1):59–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Dorsett Y, et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 2008;28(5):630–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ling H, et al. The clinical and biological significance of MIR-224 expression in colorectal cancer metastasis. Gut. 2015. doi:10.1136/gutjnl-2015-309372.

    Google Scholar 

  183. Xia K, et al. miR-411 regulated ITCH expression and promoted cell proliferation in human hepatocellular carcinoma cells. Biomed Pharmacother. 2015;70:158–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabita N. Saldanha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saldanha, S.N., Soni, S. (2016). Epigenetic Control of Genes Involved in Cancer Initiation and Progression. In: Mishra, M., Bishnupuri, K. (eds) Epigenetic Advancements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-24951-3_1

Download citation

Publish with us

Policies and ethics