Skip to main content

Reaction-Diffusion-ODE Models of Pattern Formation

  • Chapter
  • First Online:
Evolutionary Equations with Applications in Natural Sciences

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2126))

Abstract

This chapter is devoted to analysis of a class of reaction-diffusion type models arising from mathematical biology. We focus on mechanisms pattern formation in reaction-diffusion equations coupled to ordinary differential equations. Such systems are applied to modelling of interactions between cellular processes and diffusing signalling factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Anma, K. Sakamoto, T. Yoneda, Unstable subsystems cause Turing instability. Kodai Math. J. 35, 215–247 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. V.I. Arnold, Ordinary Differential Equations (Springer, Berlin, 1992)

    Google Scholar 

  3. D.G. Aronson, A. Tesei H. Weinberger, A density-dependent diffusion system with stable discontinuous stationary solutions. Ann. Mat. Pura Appl. 152, 259–280 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Berestycki, G. Nadin, P. Perthame, L. Ryzhik, The non-local Fisher-KPP equation: traveling waves and steady states. Nonlinearity 22, 2813–2844 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Bertolusso, M. Kimmel, Modeling spatial effects in early carcinogenesis: stochastic versus deterministic reaction-diffusion systems. Math. Modell. Nat. Phenomena 7, 245–260 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, New York, 2010)

    Book  Google Scholar 

  7. R. Caste, C. Holland, Instability results for reaction-diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27, 266–273 (1978)

    Article  Google Scholar 

  8. H. Chuan Le, T. Tsujikawa, A. Yagi, Asymptotic behaviour of solutions for forest kinematic model. Funkcial. Ekvac. 49, 427–449 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. K.-L. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol 194 (Springer, New York, 2000)

    Google Scholar 

  10. J.W. Evans, Nerve axon equations. IV. The stable and the unstable impulse. Indiana Univ. Math. J. 24, 1169–1190 (1974/1975)

    Google Scholar 

  11. S. Friedlander, W. Strauss, M. Vishik, Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 187–209 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. M.G. Garroni, V.A. Solonnikov, M.A. Vivaldi, Schauder estimates for a system of equations of mixed type. Rend. Mat. Appl. 29, 117–132 (2009)

    MATH  MathSciNet  Google Scholar 

  13. A. Gierer, H. Meinhardt, A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  14. P. Gray, S.K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38, 29–43 (1983)

    Article  Google Scholar 

  15. S. Härting, A. Marciniak-Czochra, Spike patterns in a reactiondiffusion ODE model with Turing instability. Math. Methods Appl. Sci. 1–15 (2013). doi:10.1002/mma.2899

    Google Scholar 

  16. D. Henry, Geometric Theory of Semilinear Parabolic Equations (Springer, New York, 1981)

    MATH  Google Scholar 

  17. S. Hock, Y. Ng, J. Hasenauer, D. Wittmann, D. Lutter, D. Trümbach, W. Wurst, N. Prakash, F.J. Theis, Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation. BMC Syst. Biol. 7, 48 (2013)

    Article  Google Scholar 

  18. F. Hoppensteadt, W. Jäger, C. Pöppe, in A Hysteresis Model for Bacterial Growth Patterns, ed. by S. Levin, Lecture Notes in Biomathematics: Modelling of Patterns in Space and Time (Springer, Heidelberg, 1983)

    Google Scholar 

  19. H. Jiang, Global existence of solutions of an activator-inhibitor system. Discrete Contin. Dyn. Syst. 14, 737–751 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Karali, T. Suzuki, Y. Yamada, Global-in-time behaviour of the solution to a Gierer-Meinhardt system. Discrete Contin. Dyn. Syst. 33, 2885–2900 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Klika, R.E. Baker, D. Headon, E.A. Gaffney, The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation. Bull. Math. Biol. 74, 935–957 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Köthe, Hysteresis-driven pattern formation in reaction-diffusion-ODE models. Ph.D. thesis, University of Heidelberg, 2013

    Google Scholar 

  23. A. Köthe, A. Marciniak-Czochra, Multistability and hysteresis-based mechanism of pattern formation in biology, in Pattern Formation in Morphogenesis-Problems and Their Mathematical Formalisation, eds. by V. Capasso, M. Gromov, N. Morozova (Springer, New York, 2012)

    Google Scholar 

  24. S. Krömker, Model and Analysis of Heterogeneous Catalysis with Phase Transition. Ph.D. thesis, University of Heidelberg, 1997

    Google Scholar 

  25. O.A. Ladyzenskaja, V.A. Solonnikov, The linearisation principle and invariant manifolds for problems of magnetohydrodynamics, Boundary value problems of mathematical physics and related questions in the theory of functions, 7. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38, 46–93 (1973) (in Russian)

    MathSciNet  Google Scholar 

  26. M.D. Li, S.H. Chen, Y.C. Qin, Boundedness and blow up for the general activator-inhibitor model. Acta Math. Appl. Sinica (English Ser.), 11, 59–68 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. C.-S. Lin, W.-M. Ni, I. Takagi, Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72, 1–27 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. W. Loud, Periodic solutions of \(x'' + cx' + g(x) = f(t)\). Mem. Am. Math. Soc. 31, 58 (1959)

    MathSciNet  Google Scholar 

  29. A. Marciniak-Czochra, Receptor-based models with diffusion-driven instability for pattern formation in hydra. J. Biol. Sys. 11, 293–324 (2003)

    Article  MATH  Google Scholar 

  30. A. Marciniak-Czochra, Receptor-based models with hysteresis for pattern formation in hydra. Math. Biosci. 199, 97–119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Marciniak-Czochra, Strong two-scale convergence and corrector result for the receptor-based model of the intercellular communication. IMA J. Appl. Math. (2012). doi:10.1093/imamat/hxs052

    Google Scholar 

  32. A. Marciniak-Czochra, M. Kimmel, Dynamics of growth and signalling along linear and surface structures in very early tumors. Comput. Math. Methods Med. 7, 189–213 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Marciniak-Czochra, M. Kimmel, Modelling of early lung cancer progression: influence of growth factor production and cooperation between partially transformed cells. Math. Models Methods Appl. Sci. 17, 1693–1719 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. A. Marciniak-Czochra, M. Kimmel, Reaction-diffusion model of early carcinogenesis: the effects of influx of mutated cells. Math. Model. Nat. Phenom. 3, 90–114 (2008)

    Article  MathSciNet  Google Scholar 

  35. A. Marciniak-Czochra, M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenisation techniques. SIAM J. Mat. Anal. 40, 215–237 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Marciniak-Czochra, S. Härting, G. Karch, K. Suzuki, Dynamical spike solutions in a nonlocal model of pattern formation (2013). Preprint available at http://arxiv.org/abs/1307.6236

  37. A. Marciniak-Czochra, G. Karch, K. Suzuki, Unstable patterns in reaction-diffusion model of early carcinogenesis. J. Math. Pures Appl. 99, 509–543 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Marciniak-Czochra, G. Karch, K. Suzuki, Unstable patterns in autocatalytic reaction-diffusion-ODE systems (2013). Preprint available at http://arxiv.org/abs/1301.2002

  39. A. Marciniak-Czochra, M. Nakayama, I. Takagi, Pattern formation in a diffusion-ODE model with hysteresis (2013). Preprint available at http://arXiv:1311.1737

  40. K. Masuda, K. Takahashi, Reaction-diffusion systems in the Gierer–Meinhardt theory of biological pattern formation. Jpn J. Appl. Math. 4, (1987) 47–58

    Article  MATH  MathSciNet  Google Scholar 

  41. H. Meinhardt, A model for pattern formation of hypostome, tentacles and foot in hydra: how to form structures close to each other, how to form them at a distance. Dev. Biol. 157, 321–333 (1993)

    Article  Google Scholar 

  42. H. Meinhardt, Turing’s theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition. Interface Focus (2012). doi:10.1098/rsfs.2011.0097

    Google Scholar 

  43. H. Meinhardt, Modeling pattern formation in hydra—a route to understand essential steps in development. Int. J. Dev. Biol. (2012). doi:10.1387/ijdb.113483hm

    Google Scholar 

  44. M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics. Hiroshima Math. J. 11, 621–635 (1981)

    MATH  MathSciNet  Google Scholar 

  45. M. Mimura, M. Tabata, Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with a small parameter. SIAM J. Math. Anal. 11, 613–631 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  46. G. Mulone, V.A. Solonnikov, Linearisation principle for a system of equations of mixed type. Nonlinear Anal. 71, 1019–1031 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  47. J.D. Murray, Mathematical Biology II. Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, 3rd edn, vol 18 (Springer, New York, 2003)

    Google Scholar 

  48. W.-M. Ni, Qualitative properties of solutions to elliptic problems, in Handbook of Differential Equations: Stationary Partial Differential Equations, eds. by M. Chipot, P. Quittner, vol 1 (North-Holland, Amsterdam, 2004) pp. 157–233

    Google Scholar 

  49. W.-M. Ni, The Mathematics of Diffusion (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  50. W.-M. Ni, I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. Trans. Am. Math. Soc. 297, 351–368 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  51. W.-M. Ni, I. Takagi, On the shape of least energy solution to a semilinear Neumann problem. Commun. Pure Appl. Math. 44, 819–851 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  52. W.-M. Ni, I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70, 247–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  53. W.-M. Ni, I. Takagi, Point condensation generated by a reaction-diffusion system in axially symmetric domains. Jpn. J. Indust. Appl. Math. 12, 327–365 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  54. K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H.M. Byrne, V. Cristini, J. Lowengrub, Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy. J. Biol. Dyn. 6, 54–71 (2011)

    Article  MathSciNet  Google Scholar 

  55. M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn (Academic Press Inc., New York, 1980)

    Google Scholar 

  56. F. Rothe, Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Mathematics, vol 1072 (Springer, Berlin, 1984)

    Google Scholar 

  57. K. Sakamoto, Construction and stability analysis of transition layer solutions in reaction-diffusion systems. Tohoku Math. J. 42, 17–44 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  58. R.A. Satnoianu, M. Menzinger, P.K. Maini, Turing instabilities in general systems. J. Math. Biol. 41, 493–512 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  59. R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems. Lecture Notes in Mathematics (Springer, New York, 1990)

    Google Scholar 

  60. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, 2nd edn, vol 258 (Springer, New York, 1994)

    Google Scholar 

  61. K. Suzuki, Existence and behaviour of solutions to a reaction-diffusion system modelling morphogenesis. Ph.D. thesis, Tohoku University, Sendai, Japan, 1996

    Google Scholar 

  62. K. Suzuki, Mechanism generating spatial patterns in reaction-diffusion systems. Interdiscip. Inform. Sci. 17 131–153 (2011)

    MATH  MathSciNet  Google Scholar 

  63. K. Suzuki, I. Takagi, Collapse of patterns and effect of basic production terms in some reaction-diffusion systems. GAKUTO Internat. Ser. Math. Sci. Appl. 32, 168–187 (2010)

    MathSciNet  Google Scholar 

  64. K. Suzuki, I. Takagi, On the role of basic production terms in an activator-inhibitor system modelling biological pattern formation. Funkcial. Ekvac. 54, 237–274 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  65. I. Takagi, Point-condensation for a reaction-diffusion system. J. Differ. Equ. 61, 208–249 (1986)

    Article  MATH  Google Scholar 

  66. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952)

    Article  Google Scholar 

  67. D.M. Umulis, M. Serpe, M.B. O’Connor, H.G. Othmer, Robust, bistable patterning of the dorsal surface of the Drosophila embryo. Proc. Natl. Acad. Sci. 103, 11613–11618 (2006)

    Article  Google Scholar 

  68. L. Wang, H. Shao, Y. Wu, Stability of travelling front solutions for a forest dynamical system with cross-diffusion. IMA J. Appl. Math. 78, 494–512 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  69. J. Wei, Existence and stability of spikes for the Gierer–Meinhardt system, in Handbook of Differential Equations: Stationary Partial Differential Equations, vol V, Handbook of Differential Equations (Elsevier/North-Holland, Amsterdam, 2008) pp. 487–585

    Google Scholar 

  70. H. Weinberger, A simple system with a continuum of stable inhomogeneous steady states. Nonlinear Partial Differ. Equ. Appl. Sci. 81, 345–359 (1983)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

A. M-C was supported by European Research Council Starting Grant No 210680 “Multiscale mathematical modelling of dynamics of structure formation in cell systems” and Emmy Noether Programme of German Research Council (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Marciniak-Czochra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marciniak-Czochra, A. (2015). Reaction-Diffusion-ODE Models of Pattern Formation. In: Banasiak, J., Mokhtar-Kharroubi, M. (eds) Evolutionary Equations with Applications in Natural Sciences. Lecture Notes in Mathematics, vol 2126. Springer, Cham. https://doi.org/10.1007/978-3-319-11322-7_8

Download citation

Publish with us

Policies and ethics