Skip to main content

Canards and Black Swans

  • Chapter
  • First Online:
Singular Perturbations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2114))

Abstract

The chapter is devoted to the investigation of the relationship between slow integral manifolds of singularly perturbed differential equations and critical phenomena in chemical kinetics. We consider different problems e.g., laser models, classical combustion models and gas combustion in a dust-laden medium models, 3-D autocatalator model, using the techniques of canards and black swans. The existence of canard cascades is stated for the van der Pol model and models of the Lotka-Volterra type. The language of singular perturbations seems to apply to all critical phenomena even in the most disparate chemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “An absurd story circulated as a hoax”, see Shorter Oxford English Dictionary.

References

  1. Adegbie, K.S., Alao, F.I.: Studies on the effects of interphase heat exchange during thermal explosion in a combustible dusty gas with general Arrhenius reaction-rate laws. J. Appl. Math. 2012, 541348 (2012)

    Google Scholar 

  2. Arnold, V.I., Afraimovich, V.S., Il’yashenko, Yu.S., Shil’niko, L.P.: Theory of bifurcations. In: Arnold, V. (ed.) Dynamical Systems, vol. 5. Encyclopedia of Mathematical Sciences. Springer, New York (1994)

    Google Scholar 

  3. Babushok, V.I., Goldshtein, V.M., Sobolev, V.A.: Critical condition for the thermal explosion with reactant consumption. Combust. Sci. Tech. 70, 81–89 (1990)

    Article  Google Scholar 

  4. Benoit, E.: Systèmes lents-rapides dans R 3 et leurs canards. Soc. Math. Fr. Astérisque 109–110, 159–191 (1983)

    MathSciNet  Google Scholar 

  5. Benoit, E., Callot, J.L., Diener, F., Diener M.: Chasse au canard. Collect. Math. 31–32(1–3), 37–119 (1981–1982)

    Google Scholar 

  6. Brøns, M., Kaasen, R.: Canards and mixed–mode oscillations in a forest pest model. Theor. Popul. Biol. 77(4), 238–242 (2010)

    Article  Google Scholar 

  7. Diener, M.: Nessie et Les Canards. Publication IRMA, Strasbourg (1979)

    Google Scholar 

  8. Dombrovskii, L.A., Zaichik, L.I.: Conditions of thermal explosion in a radiating gas with polydisperse liquid fuel. High Temp. 39(4), 604–611 (2001)

    Article  Google Scholar 

  9. Eckhaus, M.W.: Relaxation oscillations including a standard chase on French ducks. In: Verhulst. F. (ed.) Asymptotic Analysis II — Surveys and New Trends. Lecture Notes in Mathematics, vol. 985, pp. 449–494. Springer, Berlin (1983)

    Google Scholar 

  10. El-Sayed, S.A.: Adiabatic thermal explosion of a gas–solid mixture. Combust. Sci. Technol. 176(2), 237–256 (2004)

    Article  Google Scholar 

  11. Ghanes, M., Hilairet, M., Barbot, J.P., Bethoux, O.: Singular perturbation control for coordination of converters in a fuel cell system. Electrimacs, Cergy-Pontoise, June 2011

    Google Scholar 

  12. Gol’dshtein, V. M., Sobolev, V.A.: Integral manifolds in chemical kinetics and combustion. In: Singularity Theory and Some Problems of Functional Analysis. AMS Translations. Series 2, vol. 153, pp. 73–92. AMS, Providence (1992)

    Google Scholar 

  13. Gol’dshtein, V., Zinoviev, A., Sobolev, V., Shchepakina, E.: Criterion for thermal explosion with reactant consumption in a dusty gas. Proc. Lond. R. Soc. Ser. A. 452, 2103–2119 (1996)

    Article  MATH  Google Scholar 

  14. Golodova, E.S., Shchepakina, E.A.: Modeling of safe combustion at the maximum temperature. Math. Models Comput. Simul. 1(2), 322–334 (2009)

    Article  MathSciNet  Google Scholar 

  15. Gorelov, G.N., Sobolev, V.A.: Mathematical modeling of critical phenomena in thermal explosion theory. Combust. Flame 87, 203–210 (1991)

    Article  Google Scholar 

  16. Gorelov, G.N., Sobolev, V.A.: Duck–trajectories in a thermal explosion problem. Appl. Math. Lett. 5(6), 3–6 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gorelov, G.N., Shchepakina, E.A., Sobolev V.A.: Canards and critical behavior in autocatalytic combustion models. J. Eng. Math. 56, 143–160 (2006)

    Article  MathSciNet  Google Scholar 

  18. Huyet, G., Porta, P.A., Hegarty, S.P., McInerney, J.G., Holland, F.: A low-dimensional dynamical system to describe low-frequency fluctuations in a semiconductor laser with optical feedback. Opt. Commun. 180, 339–344 (2000)

    Article  Google Scholar 

  19. Kitaeva, E., Sobolev, V.: Numerical determination of bounded solutions to discrete singularly perturbed equations and critical combustion regimes. Comput. Math. Math. Phys. 45(1), 52–82 (2005)

    MathSciNet  Google Scholar 

  20. Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16, 347–355 (1980)

    Article  Google Scholar 

  21. Mandel, P., Erneux T.: The slow passage through a steady bifurcation: delay and memory effects. J. Stat. Phys. 48(5–6), 1059–1070 (1987)

    Article  MathSciNet  Google Scholar 

  22. McIntosh, A.C.: Semenov approach to the modelling of thermal runawway of damp combustible material. IMA J. Appl. Math. 51, 217–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. McIntosh, A.C., Gray, B.F., Wake, G.C.: Analysis of the bifurcational behaviour of a simple model of vapour ignition in porous material. Proc. R. Soc. Lond. A. 453(1957), 281–301 (1997)

    Article  MATH  Google Scholar 

  24. Mishchenko, E.F., Kolesov, Yu.S., Kolesov, A.Yu., Rozov, N.Kh.: Asymptotic Methods in Singularly Perturbed Systems. Plenum Press, New York (1995)

    Google Scholar 

  25. Mishchenko, E.F., Rozov, N.Kh.: Differential Equations with Small Parameters and Relaxation Oscillations. Plenum Press, New York (1980)

    Book  MATH  Google Scholar 

  26. Mograbi, E., Bar-Ziv, E.: On the asymptotic solution of the Maxey–Riley equation. Phys. Fluids 18(5), 051704 (2006)

    Article  MathSciNet  Google Scholar 

  27. Mortell, M.P., O’Malley, R.E., Pokrovskii, A., Sobolev, V.A. (eds.): Singular Perturbation and Hysteresis. SIAM, Philadelphia (2005)

    Google Scholar 

  28. O’Malley, R.E.: Singular Perturbations and Optimal Control. Springer Lecture Notes in Mathematics, vol. 680. Springer, New York (1978)

    Google Scholar 

  29. Peng, B., Gáspár, V., Showalter., K.: False bifurcations in chemical systems: Canards. Philos. Trans. R. Soc. Lond. A. 337, 275–289 (1991)

    Google Scholar 

  30. Petrov, V., Scott, S.K., Showalter, K.: Mixed–mode oscillations in chemical systems. J. Chem. Phys. 97, 6191–6198 (1992)

    Article  Google Scholar 

  31. Pokrovskii, A., Shchepakina E., Sobolev, V.: Canard doublet in a Lotka-Volterra type model. J. Phys. Conf. Ser. 138, 012019 (2008)

    Article  Google Scholar 

  32. Shchepakina, E.: Slow integral manifolds with stability change in the case of a fast vector variable. Differ. Equ. 38, 1146–1452 (2002)

    Article  MathSciNet  Google Scholar 

  33. Shchepakina, E.: Black swans and canards in a self-ignition problem. Non Linear Anal. Real World Appl. 4, 45–50 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shchepakina, E.: Canards and black swans in a model of a 3-D autocatalator. J. Phys. Conf. Ser. 22, 194–207 (2005)

    Article  Google Scholar 

  35. Shchepakina, E.A., Sobolev, V.A.: Modelling of critical phenomena for ignition of metal particles. J. Phys. Conf. Ser. 138, 012025 (2008)

    Article  Google Scholar 

  36. Shouman, A.R.: Solution to the dusty gas explosion problem with reactant consumption part I: the adiabatic case. Combust. Flame 119(1), 189–194 (1999)

    Article  Google Scholar 

  37. Sobolev, V.A.: Canard cascades. Discrete Continuous Dyn. Syst. 18, 513–521 (2013)

    Article  MATH  Google Scholar 

  38. Sobolev, V.A., Shchepakina, E.A.: Self–ignition of laden medium. J. Combust. Explos. Shock Waves 29(3), 378–381 (1993)

    Article  Google Scholar 

  39. Sobolev, V.A., Shchepakina, E.A.: Duck trajectories in a problem of combustion theory. Differ. Equ. 32, 1177–1186 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Straughan, B.: Explosive Instabilities in Mechanics. Springer, Berlin/Heidelberg (1998)

    Book  MATH  Google Scholar 

  41. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shchepakina, E., Sobolev, V., Mortell, M.P. (2014). Canards and Black Swans. In: Singular Perturbations. Lecture Notes in Mathematics, vol 2114. Springer, Cham. https://doi.org/10.1007/978-3-319-09570-7_8

Download citation

Publish with us

Policies and ethics