Skip to main content
Log in

Canards and critical behavior in autocatalytic combustion models

  • Original Paper
  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The basic elements of the theory of slow invariant manifolds and canard phenomena of singularly perturbed nonlinear differential equations in the context of thermal-explosion problems are outlined. The mathematical results are applied to the investigation of the critical phenomena in autocatalytic combustion models described by singularly perturbed differential equations with lumped and distributed parameters. Critical regimes are modeled by canards (one-dimensional stable-unstable slow invariant manifolds). The geometric approach in combination with asymptotic and numeric methods permits to explain the strong parametric sensitivity and to obtain asymptotic representations of the critical conditions of self-ignition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semenov NN (1958) Some problems of chemical kinetics and reactivity. I. Pergamon Press, New York, London, Paris

    Google Scholar 

  2. Zeldovich YaB, Barenblatt GI, Librovich VB, Makhviladze GM (1985) Mathematical theory of combustion and explosions. Plenum Press, New York

    Google Scholar 

  3. Frank-Kamenetskii DA (1969) Diffusion and heat transfer in chemical kinetics. Plenum Press, New York

    Google Scholar 

  4. Todes OM, Melent’ev PV (1939) The theory of thermal explosion. Zhurnal Fizichaskoi Khimii 13(7):52–58 (in Russian)

    Google Scholar 

  5. Merzhanov AG, Dubovitsky FI (1960) Quasi-stationary theory of the thermal explosion of a self-accelerating reaction. Zhurnal Fizichaskoi Khimii 34:2235–2244 (in Russian)

    Google Scholar 

  6. Merzhanov AG Dubovitskii FI (1966) Present state of the theory of thermal explosions. Russ Chem Rev 35:278–292

    Article  Google Scholar 

  7. Gray BF (1973) Critical behaviour in chemical reacting systems: 2. An exactly soluble model. Combust Flame 21:317–325

    Article  Google Scholar 

  8. Benoit E, Callot JL, Diener F, Diener M (1981–1982) Chasse au canard. Collectanea Mathematica 31–32:37–119 (in French)

    Google Scholar 

  9. Brøns M, Bar-Eli K (1994) Asymptotic analysis of canards in the EOE equations and the role of the inflaction line. Proc R Soc London A 445:305–322

    ADS  Google Scholar 

  10. Gorelov GN, Sobolev VA (1992) Duck-trajectories in a thermal explosion problem. Appl Math Lett 5(6):3–6

    Article  MathSciNet  MATH  Google Scholar 

  11. Gorelov GN, Sobolev VA (1991) Mathematical modeling of critical phenomena in thermal explosion theory. Combust Flame 87:203–210

    Article  Google Scholar 

  12. Shchepakina E (2003) Black swans and canards in self–ignition problem. Nonlin Anal: Real World Applic 4:45–50

    Article  MathSciNet  MATH  Google Scholar 

  13. Sobolev VA, Shchepakina EA (1996) Duck trajectories in a problem of combustion theory. Differ Equ 32:1177–1186

    MathSciNet  MATH  Google Scholar 

  14. Sobolev VA, Shchepakina EA (1993) Self-ignition of dusty media. Combus Explosion Shock Waves 29:378–381

    Google Scholar 

  15. Mishchenko EF, Rozov NKh (1980) Differential equations with small parameters and relaxation oscillations. Plenum Press, New York

    MATH  Google Scholar 

  16. Arnold VI, Afraimovich VS, Il’yashenko YuS, Shil’nikov LP (1994) Theory of bifurcations. In: Arnold V (ed) Dynamical systems, 5. Encyclopedia of mathematical sciences. Springer Verlag, New York, pp 1–205

    Google Scholar 

  17. Sobolev VA (1984) Integral manifolds and decomposition of singularly perturbed system. System Control Lett 5:169–179

    Article  MathSciNet  MATH  Google Scholar 

  18. Semenov NN (1928) Zur theorie des verbrennungsprozesses. Z Physik Chem 48:571–581 (in German)

    Google Scholar 

  19. Babushok VI, Gol’dshtein VM, Romanov AS, Babkin VS (1992) Thermal explosion in an inert porous medium. Combust Explosion Shock Waves 28:319–325

    Article  Google Scholar 

  20. Gol’dshtein V, Zinoviev A, Sobolev V, Shchepakina E (1996) Criterion for thermal explosion with reactant consumption in a dusty gas. Proc R Soc London A 452:2103–2119

    Article  ADS  MATH  Google Scholar 

  21. Schneider K, Shchepakina E, Sobolev V (2003) A new type of travelling wave. Math Methods Appl Sci 26:1349–1361

    Article  MathSciNet  MATH  Google Scholar 

  22. Henry D (1981) Geometrical theory of semilinear parabolic equations. Lecture Notes in Mathematics, vol 840. Springer Verlag, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sobolev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorelov, G.N., Shchepakina, E.A. & Sobolev, V.A. Canards and critical behavior in autocatalytic combustion models. J Eng Math 56, 143–160 (2006). https://doi.org/10.1007/s10665-006-9047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-006-9047-0

Keywords

Navigation