Skip to main content

An Introduction to Isometric Group Actions with Applications to Spaces with Curvature Bounded from Below

  • Chapter
  • First Online:
Geometry of Manifolds with Non-negative Sectional Curvature

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2110))

Abstract

We present a three part survey of previous and recent results in the theory of isometric group actions with applications to spaces with curvature bounded below. The first part consists of a review of basic material on isometric group actions. The second part covers the classical theorem of Hsiang and Kleiner about positively curved four manifolds admitting an isometric circle action. The third section covers recent joint work of the author with Galaz-GarcĂ­a on the structure of cohomogeneity one Alexandrov spaces.

2000 Mathematics Subject Classification. Primary: 53C20; Secondary: 57S25, 51M25

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The author was supported in part by CONACYT Project #SEP-106923.

References

  1. A.V. Alekseevskii, D.V. Alekseevskii, G-manifolds with one dimensional orbit space. Adv. Sov. Math. 8, 1–31 (1992)

    MathSciNet  Google Scholar 

  2. S. Aloff, N. Wallach, An infinite family of 7-manifolds admitting positively curved Riemannian structures. Bull. Am. Math. Soc. 81, 93–97 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Y.V. Bazaikin, On a certain family of closed 13-dimensional Riemannian manifolds of positive curvature. Sib. Math. J. 37(6), 1219–1237 (1996)

    Article  MathSciNet  Google Scholar 

  4. M. Berger, Les variétés riemanniennes homogenes normales simplement connexes a courbure strictment positive. Ann. Scuola Norm. Sup. Pisa 15, 191–240 (1961)

    Google Scholar 

  5. G. Bredon, Introduction to Compact Transformation Groups, vol. 46 (Academic, New York, 1972)

    MATH  Google Scholar 

  6. A.L. Besse, Manifolds all of Whose Geodesics are Closed. Ergebnisse Series, vol. 93 (Springer, Berlin, 1978)

    Google Scholar 

  7. Y. Burago, M. Gromov, G. Perelman, A.D. Alexandrov’s spaces with curvatures bounded below (Russian). Uspekhi Mat. Nauk, 47(2)(284), 3–51, 222 (1992) [Translation in Russian Math. Surv. 47(2), 1–58 (1992)]

    Google Scholar 

  8. D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  9. O. Dearricott, A 7-manifold with positive curvature (2010, preprint)

    Google Scholar 

  10. J.-H. Eschenburg, New examples of manifolds with strictly positive curvature, Invent. Math. 66(3), 469–480 (1986)

    Article  MathSciNet  Google Scholar 

  11. M. Freedman, The topology of four-dimensional manifolds. J. Differ. Geom. 17(3), 357–453 (1982)

    MATH  Google Scholar 

  12. K. Fukaya, A boundary of the set of Riemannian manifolds with bounded curvatures and diameters. J. Differ. Geom. 28, 1–21 (1988)

    MATH  MathSciNet  Google Scholar 

  13. K. Fukaya, T. Yamaguchi, Isometry groups of singular spaces. Math. Z. 216, 31–44 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Galaz-García, C. Searle, Cohomogeneity one Alexandrov spaces. Transform. Groups, 16(1), 91–107 (2011)

    Article  MATH  Google Scholar 

  15. K. Grove, S. Markvorsen, New extremal problems for the Riemannian recognition problem via Alexandrov geometry. J. Am. Math. Soc. 8, 1–28 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Grove, P. Petersen, A radius sphere theorem. Invent. Math. 112, 577–583 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Grove, C. Searle, Positively curved manifolds with maximal symmetry rank. J. Pure Appl. Algebra 91, 137–142 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Grove, C. Searle, Differential topological restrictions curvature and symmetry. J. Differ. Geom. 47, 530–559 (1997)

    MATH  MathSciNet  Google Scholar 

  19. K. Grove, W. Ziller, Curvature and symmetry of Milnor spheres. Ann. Math. 152, 331–367 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Grove, W. Ziller, Cohomogeneity one manifolds with positive Ricci curvature. Invent. Math. 149, 619–646 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Grove, B. Wilking, W. Ziller, Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Differ. Geom. 78(1), 33–111 (2008)

    MATH  MathSciNet  Google Scholar 

  22. K. Grove, L. Verdiani, W. Ziller, An exotic T 1 S 4 with positive curvature (2010, preprint)

    Google Scholar 

  23. C. Hoelscher, Classification of cohomogeneity one manifolds in low dimensions (2009). ArXiv:0712.1327v1

    Google Scholar 

  24. W.-Y. Hsiang, B. Kleiner, On the topology of positively curved 4-manifolds with symmetry. J. Differ. Geom. 29, 615–621 (1989)

    MATH  MathSciNet  Google Scholar 

  25. S. Kobayashi, Transformation Groups in Differential Geometry. Classics in Mathematics (Springer, Berlin, 1995)

    Google Scholar 

  26. P.S. Mostert, On a compact Lie group acting on a manifold. Ann. Math. 65(2), 447–455 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  27. S.B. Myers, N.E. Steenrod, The group of isometries of a Riemannian manifold. Ann. Math. 40, 400–416 (1939)

    Article  MathSciNet  Google Scholar 

  28. W.D. Neumann, 3-Dimensional G-manifolds with 2-dimensional orbits, in Proceedings of Conference on Transformation Groups, New Orleans, 1968, pp. 220–222

    Google Scholar 

  29. J. Parker, 4-Dimensional G-manifolds with 3-dimensional orbit. Pac. J. Math. 125(1), 187–204 (1986)

    Article  MATH  Google Scholar 

  30. G. Perelman, The entropy formula for the Ricci Flow and its geometric applications, 11 Nov 2002. arXiv:math.DG/0211159

    Google Scholar 

  31. G. Perelman, Ricci Flow with surgery on three-manifolds, 10 Mar 2003. arXiv:math.DG/0303109

    Google Scholar 

  32. G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, 17 Jul 2003. arXiv:math.DG/0307245.

    Google Scholar 

  33. P. Petersen, F. Wilhelm, An exotic sphere with positive sectional curvature (2010, preprint)

    Google Scholar 

  34. P. Petersen, F. Wilhelm, S. Zhu, Spaces on and beyond the boundary of existence. J. Geom. Anal. 5(3), 419–426 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. X. Rong, Positively curved manifolds with almost maximal symmetry rank. Geometriae Dedicata 95, 157–182 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Searle, Cohomogeneity and positive curvature in low dimensions. Mathematische Zeitschrift 214(3), 491–498 (1993). Corrigendum, Math. Z. 226, 165–167 (1997)

    Google Scholar 

  37. C. Searle, D. Yang, On the topology of non-negatively curved simply-connected 4-manifolds with continuous symmetry. Duke Math. J. 74(2), 547–556 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. L. Verdiani, Cohomogeneity one Riemannian manifolds of even dimension with strictly positive sectional curvature, I. Math. Z 241, 329–339 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. L. Verdiani, Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature. J. Differ. Geom. 68(1), 31–72 (2004)

    MATH  MathSciNet  Google Scholar 

  40. N. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. Math. 96, 277–295 (1972)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Searle .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Searle, C. (2014). An Introduction to Isometric Group Actions with Applications to Spaces with Curvature Bounded from Below. In: Geometry of Manifolds with Non-negative Sectional Curvature. Lecture Notes in Mathematics, vol 2110. Springer, Cham. https://doi.org/10.1007/978-3-319-06373-7_2

Download citation

Publish with us

Policies and ethics