Skip to main content
Log in

Cohomogeneity one Alexandrov spaces

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We obtain a structure theorem for closed, cohomogeneity one Alexandrov spaces and we classify closed, cohomogeneity one Alexandrov spaces in dimensions 3 and 4. As a corollary we obtain the classification of closed, n-dimensional, cohomogeneity one Alexandrov spaces admitting an isometric T n−1 action. In contrast to the one- and two-dimensional cases, where it is known that an Alexandrov space is a topological manifold, in dimension 3 the classification contains, in addition to the known cohomogeneity one manifolds, the spherical suspension of \( \mathbb{R}{P^2} \), which is not a manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Alekseevskii, D. V. Alekseevskii, G-manifolds with one dimensional orbit space, Adv. Soviet. Math. 8 (1992), 1–31.

    MathSciNet  Google Scholar 

  2. S. Aloff, N. R. Wallach, An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93–97.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Berard-Bergery, Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive, J. Math. Pures Appl. (9) 55 (1976), no. 1, 47–67.

    MATH  MathSciNet  Google Scholar 

  4. M. Berger, Trois remarques sur les variétés riemanniennes à courbure positive, C. R. Acad. Sci. Paris Sér. A–B 263 (1966), A76–A78.

    Google Scholar 

  5. G. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York, 1972. Russian transl.: Г. Бредон, Введение в mеорию компакmных групп преобразований, Наука, М., 1980.

  6. D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, Vol. 33, Amer. Math. Soc., Providence, RI, 2001.

    Google Scholar 

  7. J. Cheeger, D. G. Ebin, Comparison Theorems in Riemannian Geometry, Amer. Math. Soc. Chelsea, Providence, RI, 2008.

    MATH  Google Scholar 

  8. K. Fukaya, T. Yamaguchi, Isometry groups of singular spaces, Math. Z. 216 (1994), 31–44.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Grove, D. Gromoll, A generalization of Berger’s rigidity theorem for positively curved manifolds, Ann. Sci. École Norm. Sup. (4) 20 (1987), 227–239.

    MATH  MathSciNet  Google Scholar 

  10. K. Grove, S. Markvorsen, New extremal problems for the Riemannian recognition problem via Alexandrov geometry, J. Amer. Math. Soc. 8 (1995), 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Grove, P. Petersen, A radius sphere theorem, Invent. Math. 112 (1993), 577–583.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Grove, F. Wilhelm, Hard and soft packing radius theorems, Ann. of Math. (2) 142 (1995), no. 2, 213–237.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Grove, B. Wilking, W. Ziller, Positively curved cohomogeneity one manifolds and 3-Sasakian geometry, J. Differential Geom. 78 (2008), no. 1, 33–111.

    MATH  MathSciNet  Google Scholar 

  14. K. Grove, W. Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math. (2) 152 (2000), no. 1, 331–367.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Grove, W. Ziller, Cohomogeneity one manifolds with positive Ricci curvature, Invent. Math. 149 (2002), no. 3, 619–646.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. Hoelscher, Classification of cohomogeneity one manifolds in low dimensions, arXiv:0712.1327v1 [math.DG] (2009).

  17. V. Kapovitch, Perelman’s stability theorem, in: Surveys in Differential Geometry, Vol. XI, Int. Press, Somerville, MA, 2007, pp. 103–136.

  18. S. Kobayashi, Transformation Groups in Differential Geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  19. А. Милка, Меmрическая сmрукmура одного класса просmрансmв, содержащих прямые линии, Укр. геом. сб. 4 (1967), 43–48. [A. Milka, Metric structure of one class of spaces containing straight lines, Ukrain. Geom. Sb. 4 (1967), 43–48 (Russian)].

    Google Scholar 

  20. D. Montgomery, L. Zippin, A theorem on Lie groups, Bull. Amer. Math. Soc. 48 (1942), 448–452.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. S. Mostert, On a compact Lie group acting on a manifold, Ann. of Math. (2) 65 (1957), 447–455; Errata, Ann. of Math. (2) 66 (1957), 589.

  22. S. B. Myers, N. Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. (2) 40 (1939), no. 2, 400–416.

    Article  MathSciNet  Google Scholar 

  23. W. D. Neumann, 3-dimensional G-manifolds with 2-dimensional orbits, in: Proc. Conf. on Transformation Groups (New Orleans, LA, 1967), Springer, New York, 1968, pp. 220–222.

  24. J. Parker, 4-dimensional G-manifolds with 3-dimensional orbit, Pacific J. Math. 125 (1986), no. 1, 187–204.

    MATH  MathSciNet  Google Scholar 

  25. G. Perelman, A. D. Alexandrov’s spaces with curvatures bounded from below, II, preprint.

  26. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159v1 [math.DG] (2002).

  27. G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:math/0303109v1 [math.DG] (2003).

  28. G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math/0307245v1 [math.DG] (2003).

  29. A. Petrunin, Applications of quasigeodesics and gradient curves, in: Comparison Geometry (Berkeley, CA, 1993{94), Math. Sci. Res. Inst. Publ., Vol. 30, Cambridge University Press, Cambridge, 1997, pp. 203–219.

  30. C. Searle, Cohomogeneity and positive curvature in low dimensions, Math. Z. 214 (1993), no. 3, 491–498; Corrigendum, Math. Z. 214 (1993), no. 3, 491–498.

  31. T. Shioya, T. Yamaguchi, Volume collapsed three-manifolds with a lower curvature bound, arXiv:math/0304472v3 [math.DG] (2004).

  32. L. Verdiani, Cohomogeneity one Riemannian manifolds of even dimension with strictly positive sectional curvature, I, Math. Z. 241 (2002), 329–229.

    Article  MATH  MathSciNet  Google Scholar 

  33. L. Verdiani, Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature, J. Differential Geom. 68 (2004), no. 1, 31–72.

    MATH  MathSciNet  Google Scholar 

  34. N. R. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. (2) 96 (1972), 277–295.

    Article  MathSciNet  Google Scholar 

  35. J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967. Russian transl.: Дж. Вольф, Просmрансmва посmояной кривизны, Наука, М., 1982.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Galaz-Garcia.

Additional information

This author was supported in part by CONACYT project #SEP-82471.

This author was supported in part by CONACYT Project #SEP-CO1-46274, CONACYT project #SEP-82471, and UNAM DGAPA project IN-115408.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galaz-Garcia, F., Searle, C. Cohomogeneity one Alexandrov spaces. Transformation Groups 16, 91–107 (2011). https://doi.org/10.1007/s00031-011-9122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9122-0

Keywords

Navigation