Skip to main content

Identifying Suitable Sites for Rainwater Harvesting Structures Using Runoff Model (SCS-CN), Remote Sensing and GIS Techniques in Upper Kangsabati Watershed, West Bengal, India

  • Chapter
  • First Online:
Geostatistics and Geospatial Technologies for Groundwater Resources in India

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

The Upper Kangsabati Watershed (UKW) is a drought-prone region where the scarcity of water risk has been leading to the serious potential human problems. To mitigate this water scarcity threat, watershed management in the forms of construction of rainwater harvesting (RWH) structures to trap the rainfall and unused surface runoff has become the main priorities. Watershed has been chosen as one of the principal planning units for water resources management in a sustainable way. The rainfall induced runoff always play vital role of the availability of surface, sub-surface and groundwater recharge within a particular watershed. The aims of our present research work are (a) to estimate the surface rainfall-runoff using Soil Conservation Service Curve Number (SCS-CN) analysis and geospatial (GIS) technology, and (b) to identifying favorable sites for collection of rainwater using guiding principles given by Integrated Mission for Sustainable Development (IMSD) in conjunction with overlay analysis of weighted parameters in GIS platform of UKW. The different environmental parameters i.e. land use land cover (LULC), soil classes (texture), geomorphic, lineament, weathering profile, slope, hydrologic soil group (HSG),rainfall, runoff depth, and stream orders have used to analysis surface runoff and delineating different RWH structures of UKW. However, it has noticed that the deepness of average annual runoff is 979.45 mm and runoff volume is 280.85 m3. Being a part of the Chhotanagpur plateau, the study area is covered with hard rock terrain and having undulating rugged topography; thus, average annual runoff depth is significantly high. In addition, total thirty-three check dams, twenty-eight minor irrigation tanks, and eleven percolation tanks locations have identified for sustainable rainwater harvesting structures. Hence, this study will help planners to conserve the water, land and other natural resources of UKW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adham, A., Sayl, K. N., Abed, R., Abdeladhim, M. A., Wesseling, J. G., Riksen, M., & Ritsema, C. J. (2018). A GIS-based approach for identifying potential sites for harvesting rainwater in the Western Desert of Iraq. International Soil and Water Conservation Research, 6(4), 297–304.

    Article  Google Scholar 

  • Alcamo, J., Henrichs, T., Rösch, T., Alcamo, J., Henrichs, T., & Rösch, T. (2000). World water in 2025: Global modelling and scenario analysis for the World Commission on Water for the 21st Century. Germany: Kassel.

    Google Scholar 

  • Allen, T., & Hjelmfelt, J. (1991). Investigation of curve number procedure. Journal of Hydraulic Engineering, 117(6), 725–737.

    Article  Google Scholar 

  • Ammar, A., Riksen, M., Ouessar, M., & Ritsema, C. (2016). Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. International Soil and Water Conservation Research, 4(2), 108–120.

    Article  Google Scholar 

  • Amutha, R., & Porchelvan, P. (2009). Estimation of surface runoff in Malattar sub-watershed using SCS-cn method. Journal of the Indian Society of Remote Sensing, 37(2), 291–304.

    Article  Google Scholar 

  • Bamne, Y., Patil, K. A., & Vikhe, S. D. (2014). Selection of appropriate sites for structures of water harvesting in a watershed using remote sensing and geographical information. System, 4(11), 270–275.

    Google Scholar 

  • Biswas, A. K., & Tortajada, C. (2009). Changing global water management landscape. In D. Altinbilek, C. Gopalakrishnan, J. Lundqvist, A. Pres, A. Turton, S. Africa, & O. Varis (Eds.), Water management in 2020 and beyond (pp. 1–34).

    Google Scholar 

  • Chakrabarti, P. (2002). Water resources evaluation and management: A measure for challenging hydro-geomorphic hazard. Unpublished Report, Department of Science and Technology, Govt. of West Bengal.

    Google Scholar 

  • Chakrabortty, R., Pal, S. C., Malik, S., & Das, B. (2018). Modeling and mapping of groundwater potentiality zones using AHP and GIS technique: A case study of Raniganj Block, Paschim Bardhaman, West Bengal. Modeling Earth Systems and Environment, 4(3), 1085–1110.

    Article  Google Scholar 

  • CWC, & NRSC. . (2014). Watershed Atlas of India. New Delhi: Ministry of Water Resource.

    Google Scholar 

  • Das, B., Pal, S. C., Malik, S., & Chakrabortty, R. (2018). Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geology, Ecology, and Landscapes, 2, 1–15.

    Article  Google Scholar 

  • Das, B., & Pal, S. C. (2020). Assessment of groundwater vulnerability to over-exploitation using MCDA, AHP, fuzzy logic and novel ensemble models: A case study of Goghat-I and II blocks of West Bengal. India. Environmental Earth Sciences, 79(5), 1–16.

    Google Scholar 

  • Das, B., & Pal, S. C. (2019). Assessment of groundwater recharge and its potential zone identification in groundwater-stressed Goghat-I block of Hugli District, West Bengal (pp. 1–19). Development and Sustainability: India. Environment.

    Google Scholar 

  • Durbude, D. G., Purandara, B. K., & Sharma, A. (2001). Estimation of surface runoff potential of a watershed in semi arid environment—A case study. Journal of Indian Society of Remote Sensing, 29(1 & 2), 48–58.

    Google Scholar 

  • Gajbhiye, S. (2015). Estimation of surface runoff using remote sensing and geographic information system. International Journal of u-and e- Service, Science and technology, 8(4), 113–122.

    Google Scholar 

  • Gavit, B. K., Purohit, R. C., Singh, P. K., Kothari, M., & Jain, H. K. (2018). Rainwater harvesting structure site suitability using remote sensing and GIS. In V. P. Singh, S. Yadav, & R. N. Yadava (Eds.), Hydrologic modeling select proceedings of ICWEES-2016 (pp. 455–474).

    Google Scholar 

  • Gitika, T., & Ranjan, S. (2014). Estimation of surface runoff using NRCS curve number procedure in Buriganga watershed, Assam, India—A Geospatial Approach. International Research Journal of Earth Sciences, 2(5), 1–7.

    Google Scholar 

  • Goudie, A. S. (2004). Encyclopedia of geomorphology. London: Routledge.

    Google Scholar 

  • Guzha, A. C., Rufino, M. C., Okoth, S., Jacobs, S., & Nobrega, R. L. B. (2018). Impacts of land use and land cover change on surface runoff, discharge and low flows : Evidence from East Africa. Journal of Hydrology: Regional Studies, 15, 49–67.

    Google Scholar 

  • Hauser, V. L., & Jones, O. R. (1991). Runoff curve number for the Southern high plains. Transaction of the ASAE, 34(1), 142–148.

    Article  Google Scholar 

  • Jha, M. K., Chowdary, V. M., Kulkarni, Y., & Mal, B. C. (2014). Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis. Resources, Conservation and Recycling, 83, 96–111.

    Article  Google Scholar 

  • Jung, J. W., Yoon, K. S., Choi, D. H., Lim, S. S., Choi, W. J., Choi, S. M., & Lim, B. J. (2012). Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes. Agricultural Water Management, 110, 78–83.

    Article  Google Scholar 

  • Kumar, M. G., Agarwal, A. K., & Bali, R. (2008). Delineation of potential sites for water harvesting structures using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 36, 323–334.

    Article  Google Scholar 

  • Mahmoud, S. H., & Alazba, A. A. (2015). The potential of in situ rainwater harvesting in arid regions: Developing a methodology to identify suitable areas using GIS-based decision support system. Arabian Journal of Geosciences, 8(7), 5167–5179.

    Article  Google Scholar 

  • Mbilinyi, B. P., Tumbo, S. D., Mahoo, H. F., & Mkiramwinyi, F. O. (2007). GIS-based decision support system for identifying potential sites for rainwater harvesting. Physics and Chemistry of the Earth, 32(15–18), 1074–1081.

    Article  Google Scholar 

  • Mugo, G. M., & Odera, P. A. (2018). Site selection for rainwater harvesting structures in Kiambu County-Kenya. Egyptian Journal of Remote Sensing and Space Science.

    Google Scholar 

  • Nagaraja, N., & Poongothai, S. (2012). Spatial mapping of runoff from a watershed using SCS-CN method with remote sensing and GIS. Journal of Hydrologic Engineering, 17(11), 1268–1277.

    Article  Google Scholar 

  • Naseef, A. U. T., & Thomas, R. (2016). Identification of suitable sites for water harvesting structures in Kecheri River Basin. Procedia Technology, 24, 7–14.

    Google Scholar 

  • Ningarahu, H. J., Ganesh Kumar, S. B., & Surendra, H. J. (2016). Estimation of runoff using SCS-CN and GIS method in ungauged watershed: A case study of Kharadya mill watershed, India. International Journal of Advanced Engineering Research and Science, 3(5), 2349–6495.

    Google Scholar 

  • Nketiaa, A. K., Forkuob, E. K., Asamoaha, E., & Senayaa, J. K. (2013). Using a Gis-based model as a decision support framework for identifying suitable rain water harvesting sites. International Journal of Advanced Technology & Engineering Research, 3(4), 25–33.

    Google Scholar 

  • Owuor, S. O., Butterbach-Bahl, K., Guzha, A. C., Rufino, M. C., Pelster, D. E., Díaz-Pinés, E., & Breuer, L. (2016). Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecological Processes, 5(16), 1–21.

    Google Scholar 

  • Padmavathy, A. S., Ganesha Raj, K., Yogarajan, N., Thangavel, P., & Chandrasekhar, M. G. (1993). Checkdam site selection using GIS approach. Advances in Space Research, 13(11), 123–127.

    Article  Google Scholar 

  • Pal, S. C., & Chakrabortty, R. (2018). Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India. Modeling Earth Systems and Environment, 5(2), 369–393.

    Article  Google Scholar 

  • Pal, S. C., & Chakrabortty, R. (2019). Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Advances in Space Research, 64(2), 352–377.

    Article  Google Scholar 

  • Pal, S. C., & Shit, M. (2017). Application of RUSLE model for soil loss estimation of Jaipanda watershed. West Bengal. Spatial Information Research, 25(3), 399–409.

    Article  Google Scholar 

  • Ponce, V. M., & Hawkins, R. H. (1996). Runoff curve number: Has it reached maturity? Journal of Hydrologic Engineering, 1(1), 11–19.

    Article  Google Scholar 

  • Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475.

    Article  Google Scholar 

  • Raju, R. S., Raju, G. S., & Rajashekhar, M. (2018). Estimation of rainfall runoff using SCS-CN method with RS and GIS techniques for Mandavi Basin in YSR Kadapa District of Andhra Pradesh, India. Hydrospatial Analysis, 2(1), 1–15.

    Google Scholar 

  • Rao, N. S. (2006). Groundwater potential index in a crystalline terrain using remote sensing data. Environmental Geology, 50(7), 1067–1076.

    Article  Google Scholar 

  • Rao, K., Narendra, K., & Latha, P. (2010). An integrated study of geospatial information technologies for surface runoff estimation in an agricultural watershed, India. Journal of Indian Society of Remote Sensing, 38(2), 255–267.

    Article  Google Scholar 

  • Saha, A., Ghosh, M., & Pal, S. C. (2020). Understanding the morphology and development of a Rill-Gully: An empirical study of Khoai Badland, West Bengal, India. In Gully erosion studies from India and surrounding regions (pp. 147–161). Cham: Springer.

    Google Scholar 

  • Saini, K. M., Deb, T. K., Mitra, P. P., Ghatol, S. G., Sen, A. K., Saha, N. C., & Das, S. N. (1999). Assessment of degraded lands of Puruliya district, West Bengal using remotely sensed data. Journal of the Indian Society of Remote Sensing, 27(1), 23–30.

    Article  Google Scholar 

  • Sarkar, D., Gangopadhyay, S. K., & Sahoo, A. K. (2006). Soil resource appraisal towards land use planning using satellite remote sensing and GIS—A case study in Patloinala micro watershed, District Puruliya, West Bengal, 34(3), 246–260.

    Google Scholar 

  • Satheeshkumar, S., Venkateswaran, S., & Kannan, R. (2017). Rainfall–runoff estimation using SCS–CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub basin, South India. Modeling Earth Systems and Environment, 3(1), 1–8.

    Article  Google Scholar 

  • Schulze, R., Schmidt, E., & Smithers, J. (1992). SCS-SA user manual PC based SCS design flood estimates for small catchments in Southern Africa. Pietermaritzburg.

    Google Scholar 

  • Shi, Z. H., Chen, L. D., Fang, N. F., Qin, D. F., & Cai, C. F. (2009). Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the three gorges area. China. Catena, 77(1), 1–7.

    Article  Google Scholar 

  • Sindhu, D., Shivakumar, B. L., & Ravikumar, A. S. (2013). Estimation of surface runoff in Nallur Amanikere. International Journal of Research in Engineering and Technology. EISSN, 404–409.

    Google Scholar 

  • Singh, J. P., Singh, D., & Litoria, P. K. (2009). Selection of suitable sites for water harvesting structures in Soankhad watershed, Punjab using remote sensing and geographical information system (RS&GIS) approach- a case study. Journal of the Indian Society of Remote Sensing, 37(1), 21–35.

    Article  Google Scholar 

  • Singh, L. K., Jha, M. K., & Chowdary, V. M. (2017). Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. Journal of Cleaner Production, 142, 1436–1456.

    Article  Google Scholar 

  • Sinha, D. D., Mohaptra, S. N., & Pani, P. (2015). Site selection for suitable water harvesting strature using remote sensing and GIS. Transactions: Journal of Institute of Indian Geographer, 37(2), 223–233.

    Google Scholar 

  • Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in Northern India, from satellite gravity observations. Geophysical Research Letters, 36, L15401.

    Article  Google Scholar 

  • Tumbo, S. D., Mbillinyi, B. P., Mahoo, H. F., & Mkilamwinyi, F.(2014). Identification of suitable indices for identification of potential sites for rainwater harvesting. Tanzania Journal of Agricultural Sciences, 12(2), 35–46.

    Google Scholar 

  • USDA. (1972). Soil conservation service, In National Engineering handbook. Washington D.C., USA: USDA.

    Google Scholar 

  • USDA-SCS. (1974). Soil survey of Travis County. Texas Agricultural Experiment Station, and Washington, D.C: USDA Soil Conservation Service.

    Google Scholar 

  • USDA. (1986). Urban hydrology for small. Washington DC, USDA. Retrieved from https://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Urban+Hydrology+for+Small+watersheds#1.

  • Wallace, J. S., & Gregory, P. J. (2002). Water resources and their use in food production systems. Aquatic Sciences, 64(4), 363–375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Chandra Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, A., Ghosh, M., Chandra Pal, S. (2021). Identifying Suitable Sites for Rainwater Harvesting Structures Using Runoff Model (SCS-CN), Remote Sensing and GIS Techniques in Upper Kangsabati Watershed, West Bengal, India. In: Adhikary, P.P., Shit, P.K., Santra, P., Bhunia, G.S., Tiwari, A.K., Chaudhary, B.S. (eds) Geostatistics and Geospatial Technologies for Groundwater Resources in India. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-62397-5_7

Download citation

Publish with us

Policies and ethics