Skip to main content

Introduction to Microbiota and Biofertilizers

  • Chapter
  • First Online:
Microbiota and Biofertilizers, Vol 2

Abstract

The global population is increasing, imposing challenges to the horticultural sector across the length and breadth of the planet. In order to meet out the needs of this growing population, a dire need has arisen to make efforts so as to put the production on the same page. The extensive utilization of synthetic fertilizers all around the globe has imposed detrimental impacts on environment, plant, and animal health; besides it has deprived soil from organic matter. Therefore, it is high time to switch to other modes of fertigation. One of the alternatives is to utilize the microbial capabilities to be used as biofertilizers. Biofertilizers appended by the living microbes inhabit the roots endogenously, thereby boosting the delivery of nutrients to the crops, once put into operation with seeds, plant surfaces, or soils. They help in germination and plant development and increase fertility status of soils. They revive the minerals and organic matter in soils. They advance health status of soil as well as help plants in fighting infection by suppressing disease pathogens. Additionally, biofertilizers have a significant role in bioremediating heavy metals and pesticides by detoxifying them. They are more thrifty when compared to synthetic fertilizers and hence accessible to planters and farmers with much ease. They are eco-friendly, safer, and best alternatives to chemical fertilizers. There is a close connection between crop production and soil microbiota, especially those which are present around the roots. Microorganisms perform a significant function in cycling of nutrients; they exclusively facilitate the processes of fixation of nitrogen, denitrification, as well as nitrification. Hence, application of biofertilizers is commendable with regard to augmentation and maintenance of soil nutrients, thus plummeting the usage of synthetic fertilizers, for a resourceful and environmental-friendly agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Fattah DA, Ewedab WE, Zayed MS, Hassaneina MK (2013) Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculants. Ann Agric Sci 58:111–118

    Article  Google Scholar 

  • Abu-Bakar, Nurul-Ain, Ibrahim N (2013) Indigenous microorganisms production and the effect on composting process. AIP conference proceedings 1571: 283–286. Academic Search Premier. Web. 12 Dec 2015

    Google Scholar 

  • Adam E, Bernhart M, Mu¨ller H (2016) The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant Soil. https://doi.org/10.1007/s11104-016-3113-9

  • Akhtar MS, Chali B, Azam T (2013) Bioremediation of arsenic and lead by plants and microbes from contaminated soil. Res Plant Sci 1(3):68–73

    Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Aleklett K, Leff JW, Fierer N, Hart M (2015) Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities. Peer J 3:e804

    Article  PubMed  PubMed Central  Google Scholar 

  • Ansori A, Gholami A (2015) Improved nutrient uptake and growth of maize in response to inoculation with Thiobacillus and mycorrhiza on an alkaline soil. Commun Soil Sci Plant Anal 46:2111–2126

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization and future strategies. In: Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 97–116

    Chapter  Google Scholar 

  • Askary M, Mostajeran A, Amooaghaei R, Mostajeran M (2009) Influence of the co-inoculation Azospirillum brasilense and Rhizobium meliloti plus 2, 4-D on grain yield and N, P, K content of Triticum aestivum (cv. Baccros and Mahdavi). Am Eurasian J Agric Environ Sci 5:296–307

    CAS  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. MPMI 15:1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Aziz G, Bajsa N, Haghjou T, Taule C, Valverde A, Mariano J, Arias A (2012) Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Appl Soil Ecol 61:320–326

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98. https://doi.org/10.1016/j.tplants.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Mu¨ller DB, Srinivas G (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. https://doi.org/10.1146/annurev.arplant.57.032905.105159

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515(7528):505–511

    Article  CAS  PubMed  Google Scholar 

  • Bardi L, Malusà E (2012) Drought and nutritional stresses in plant: alleviating role of rhizospheric microorganisms abiotic stress: new research. Nova Science Publishers Inc., Hauppauge, pp 1–57

    Google Scholar 

  • Bashan Y, Holguin G, Bashan LE (2004) Azospirillum-plant relationships: agricultural, physiological, molecular and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Bell CW, Asao S, Calderon F (2015) Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biol Biochem 85:170–182. https://doi.org/10.1016/j.soilbio.2015.03.006

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Berg M, Koskella B (2018) Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr Biol 28:2487–2492

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Zachow C, Müller H, Phillips J, Tilcher R (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656

    Article  Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 473–502

    Chapter  Google Scholar 

  • Bhat RA, Beigh BA, Mir SA, Dar SA, Dervash MA, Rashid A, Lone R (2018) Biopesticide Techniques to remediate pesticides in polluted ecosystems. In: Wani KA, Mamta (eds) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, Hershey, pp 387–407

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Da Silva LG, Reis V, Alves BJR, Urquiaga S (2000) Assessment of bacterial nitrogen fixation in grass species. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Horizon Scientific Press, Wymondham, pp 705–726

    Google Scholar 

  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma L-J (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55:61–83

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Loren V, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Cakmakci R, Dönmez MF, Erdoğan Ü (2007) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For 31:189–199

    CAS  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3. https://doi.org/10.1007/s11104-014-2131-8

    Article  CAS  Google Scholar 

  • Carrión VJ, Cordovez V, Tyc O, Etalo DW, Bruijn ID, Jager CL, de Victor (2018) Involvement of Burkholderiaceae and sulfurous volatiles in disease suppressive soils. ISME J 12:2307–2321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in Rhizobial inoculant production and use. Plant Soil 230(1):21–30

    Article  CAS  Google Scholar 

  • Cederlund H (2014) Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl Soil Ecol 84:62–68

    Article  Google Scholar 

  • Chang CH, Yang SS (2009) Thermotolerant phosphate solubilizing microbes for multifunctional bio-fertilizer preparation. Bio/Technology 100(4):1648–1658

    CAS  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J. https://doi.org/10.1038/ismej.2013.196

  • Chaubey OP, Prakash R (2014) Bio-reclamation of degraded ecosystem. Int J Bio-Sci Bio-Technol 6(4):145–154

    Article  Google Scholar 

  • Chen JH (2006) The combined use of chemical and organic fertilizers and/or bio-fertilizer for crop growth and soil fertility. International workshop on sustained management of the soil rhizosphere system for efficient crop production and fertilizer use. Taiwan: National Chung Hsing University. Available online at http://www.agnet.org/library/tb/174/

  • Chi F, Yang P, Han F, Jing Y, Shen S (2010) Proteomic analysis of rice seedlings infected by Sinorhizobiummeliloti 1021. Proteomics 10:1861–1874

    Article  CAS  PubMed  Google Scholar 

  • Choudhury MA, Kennedy IR (2004) Prospects and potentials for system of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Chun-Li W, Shiuan-Yuh C, Chiu-Chung Y (2014) Present situation and future perspective of bio-fertilizer for environmentally friendly agriculture. Ann Rep:1–5

    Google Scholar 

  • Dar S, Bhat RA (2020) Aquatic pollution stress and role of biofilms as environment cleanup technology. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 293–318

    Chapter  Google Scholar 

  • Dar GH, Bandh SA, Kamili AN, Nazir R, Bhat RA (2013) Comparative analysis of different types of bacterial colonies from the soils of Yusmarg Forest, Kashmir valley India. Ecologia Balkanica 5(1):31–35

    Google Scholar 

  • Dar GH, Kamili AN, Chishti MZ, Dar SA, Tantry TA, Ahmad F (2016) Characterization of Aeromonas sobria isolated from fish Rohu (Labeo rohita) collected from polluted pond. J Bacteriol Parasitol 7(3):1–5. https://doi.org/10.4172/2155-9597.1000273

    Article  CAS  Google Scholar 

  • Dar GH, Bhat RA, Kamili AN, Chishti MZ, Qadri H, Dar R, Mehmood MA (2020) Correlation between pollution trends of fresh water bodies and bacterial disease of fish Fuana. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 51–68

    Chapter  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1):323–330

    Article  CAS  PubMed  Google Scholar 

  • de Vrieze M, Germanier F, Vuille N, Weisskopf L (2018) Combining different potato associated Pseudomonas strains for improved biocontrol of Phytophthora infestans. Front Microbiol 9:2573

    Article  PubMed  PubMed Central  Google Scholar 

  • Dervash MA, Bhat RA, Shafiq S, Singh DV, Mushtaq N (2020) Biotechnological intervention as an aquatic clean up tool. In: Qadri H, Bhat RA, Mehmood MA, Dar GH (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 183–196

    Chapter  Google Scholar 

  • deWeert S, Vermeiren H, Mulders IHM (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microb Interact 15(11):1173–1180

    Article  CAS  Google Scholar 

  • Dey R, Pal KK, Tilak KV (2012) Influence of soil and plant types on diversity of rhizobacteria. Proc Natl Acad Sci India B Biol Sci 82(3):341–352

    Article  Google Scholar 

  • Dhanasekar R, Dhandapani R (2012) Effect of biofertilizers on the growth of Helianthus annuus. Int J plant Anim Environ Sci 2:143–147

    Google Scholar 

  • Diacono M, Montemurro F (2010) Long term effects of organic amendments on soil fertility: a review. Agron Sustain Dev 30(2):401–422

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Metal induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41(1):154–162

    Article  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  Google Scholar 

  • Dogan K, KamailCelik I, Mustafa Gok M, Ali C (2011) Effect of different soil tillage methods on rhizobial nodulation, biomass and nitrogen content of second crop soybean. Afr J Microbiol Res 5:3186–3194

    Article  CAS  Google Scholar 

  • Doornbos RF, Van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Dubey A, Kumar A, AbduAllah EF et al (2018) Growing more with less: breeding and developing drought resilient soybean to improve food security. Ecol Indic. https://doi.org/10.1016/j.ecolind.2018.03.003

  • Durán P, Tortella G, Viscardi S, Barra PJ, Carrión VJ, Mora LA (2018) Microbial community composition in take-all suppressive soils. Front Microbiol 9:2198

    Article  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • El-Haddad ME, Mustafa MI, Selim SM, El-Tayeb TS, Mahgoob AE, Aziz NH (2011) The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil. Braz J Microbiol 42(1):105–113

    Article  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590

    Article  CAS  PubMed  Google Scholar 

  • Gallon JR (2001) N2 fixation in phototrophs: adaptation to a specialized way of life. Plant Soil 230:39–48

    Article  CAS  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64(3):459–467

    Article  CAS  PubMed  Google Scholar 

  • Gaur A, Adholeya A (2000) Effects of the particle of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43–48

    Article  Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of Plant Growth Promoting Rhizobacteria (PGPR) on germination seedling growth and yield of maize. Int J Biol Life Sci 5:1

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. https://doi.org/10.6064/2012/963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez Expósito R, Bruijn ID, Postma J, Raaijmakers JM (2017) Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front Microbiol 8:2529

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopal M, Gupta A, Thomas GV (2013) Bespoke microbiome therapy to manage plant diseases. Front Microbiol 5:15

    Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res 65:93–106

    Article  Google Scholar 

  • Griffiths RI (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654

    Article  PubMed  Google Scholar 

  • Gupta AK (2004) The complete technology book on biofertilizer and organic farming. National Institute of Industrial Research Press India, New Delhi, pp 242–253

    Google Scholar 

  • Gutierez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hacquard S (2016) Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytol 209:454–457

    Article  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. MMBR 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–275

    Article  CAS  Google Scholar 

  • Hashem MA (2001) Problems and prospects of cyanobacterial biofertilizer for rice cultivation. Aust J Plant Physiol 28:881–888

    Google Scholar 

  • Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11(1):57–61

    Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97(20):8859–8873

    Article  CAS  PubMed  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch PR, Mauchline TH (2012) Who’s who in the plant root microbiome? Nat Biotechnol 30:961–962

    Article  CAS  PubMed  Google Scholar 

  • Hopkins SR, Wojdak JM, Belden LK (2017) Defensive symbionts mediate host–parasite interactions at multiple scales. Trends Parasitol 33:53–64

    Article  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 37. https://doi.org/10.1155/2012/872875

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267–275

    Article  Google Scholar 

  • Hultberg M, Alsanius B, Sundin P (2000) In vivo and in vitro interactions between Pseudomonas fluorescens and Pythium ultimum in the suppression of damping-off in tomato seedlings. Biol Control 19:1–8

    Article  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. MPMI 20:619–626

    Article  CAS  PubMed  Google Scholar 

  • Ilyas N, Bano A, Iqbal S, Raja NI (2012) Physiological, biochemical and molecular characterization of Azospirillum spp. isolated from maize under water stress. Pak J Bot 44:71–80

    CAS  Google Scholar 

  • Irisarri P, Gonnet S, Monza J (2001) Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J Biotechnol 91:95–103

    Article  CAS  PubMed  Google Scholar 

  • Ismail AE, Hasabo SA (2000) Evaluation of some new Egyptian commercial biofertilizers, plant nutrients and a biocide against Meloidogyne incognita root knot nematode infecting sunflower. Pak J Nematol 18:39–49

    Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prévost D (2011) Bioencapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31(3):211–226

    Article  CAS  PubMed  Google Scholar 

  • Johns C (2017) Living soils: the role of microorganisms in soil health. Future Directions International

    Google Scholar 

  • Johnston-Monje D, Lundberg DS, Lazarovits G (2016) Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405:337–355

    Article  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Juwarkar AA, Jambhulkar HP (2008) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresour Technol 99(11):4732–4741

    Article  CAS  PubMed  Google Scholar 

  • Juwarkar AA, Singh SK (2007) Utilisation of municipal solid waste as an amendment for reclamation of coal mine spoil dump. Int J Environ Technol Manag 7:407–420

    Article  CAS  Google Scholar 

  • Juwarkar AA, Dubey K, Khobragade R, Nimje M, Singh SK (2001) Integrated biotechnological approach for phytoremediation of copper mine spoil dumps and tailing. In: Proceeding of international conference on industrial pollution and control technologies (ICIPACT- 2001). JNTU, Hyderabad 7–10

    Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4(3):179–183

    Article  Google Scholar 

  • Kannaiyan S (ed) (2002) Biotechnology of biofertilizers. Alpha Science Int’l Ltd, Pangbourne

    Google Scholar 

  • Khan Z, Tiyagi SA, Mahmood I, Rizvi R (2012) Effects of N fertilization, organic matter, and biofertilizers on the growth and yield of chilli in relation to management of plant-parasitic nematodes. Turk J Bot 36(1):73–78

    CAS  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer International Publishing, Cham, pp 317–332

    Chapter  Google Scholar 

  • Khosro M, Yousef S (2012) Bacterial bio-fertilizers for sustainable crop production: a review. APRN J Agric Biol Sci 7(5):237–308

    Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    Article  PubMed  Google Scholar 

  • Kumar M, Puri A (2012) A review of permissible limits of drinking water. Indian J Occup Environ Med 16(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Chaudhuri S, Maiti SK (2013) Soil dehydrogenase enzyme activity in natural and mine soil-a review. Middle-East J Sci Res 13(7):898–906

    CAS  Google Scholar 

  • Ladygina N, Hedlund K (2010) Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol Biochem 42:162–168

    Article  CAS  Google Scholar 

  • Lauber C, Knight R, Hamady M, Fierer N (2009) Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenart A, Wolny-Koładka K (2013) The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow. Bull Environ Contam Toxicol 90(1):85–90

    Article  CAS  PubMed  Google Scholar 

  • Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res Int 2014:9

    Article  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29(3):315–330

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229

    Article  CAS  PubMed  Google Scholar 

  • MalamIssa O, Stal LJ, Défarge C, Couté A, Trichet J (2001) Nitrogen fixation by microbial crusts from desiccated Sahelian soils (Niger). Soil Biol Biochem 33:1425–1428

    Article  CAS  Google Scholar 

  • Mali GV, Bodhankar MG (2009) Antifungal and phytohormone production potential of Azotobacter chroococcum isolates from groundnut (Arachis hypogaea L.) rhizosphere. Asian J Exp Sci 23:293–297

    CAS  Google Scholar 

  • Malusa E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98(15):6599–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206

    Article  CAS  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  • Mazid M, Khan TA (2015) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3(3):10–23

    Google Scholar 

  • Mehdipour-Moghaddam MJ, Emtiazi G, Salehi Z (2012) Enhanced auxin production by Azospirillum pure cultures from plant root exudates. J Agric Sci Technol 14:985–994

    Google Scholar 

  • Mehes-Smith M, Nkongolo K, Cholewa E (2013) Coping mechanisms of plants to metal contaminated soil. In: Environmental change and sustainability, Intech, pp 978–953. https://doi.org/10.5772/55124

  • Mehmood MA, Qadri H, Bhat RA, Rashid A, Ganie SA, Dar GH, Shafiq-ur-Rehman (2019) Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environ Monit Assess Environ 191:104. https://doi.org/10.1007/s10661-019-7245-2

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Menjivar RD, Cabrera JA, Kranz J, Sikora RA (2012) Induction of metabolite organic compounds by mutualistic endophytic fungi to reduce the greenhouse whitefly Trialeurodes vaporariorum (Westwood) infection on tomato. Plant Soil 352:233–241

    Article  CAS  Google Scholar 

  • Mia MB, Shamsuddin ZH (2010) Nitrogen fixation and transportation by rhizobacteria: a scenario of rice and banana. Int J Bot 6:235–242

    Article  Google Scholar 

  • Miller IM (1990) Bacterial leaf nodule symbiosis. Adv Bot Res 17:163–234

    Google Scholar 

  • Mitter B, Pfaffenbichler N, Sessitsch A (2016) Plant–microbe partnerships in 2020. Microb Biotechnol 9:635–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Moe LA (2013) Amino acids in the rhizosphere: from plants to microbes. Am J Bot 100:1692–1705

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq N, Bhat RA, Dervash MA, Qadri H, Dar GH (2018) Biopesticides: the key component to remediate pesticide contamination in an ecosystem. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, UK, pp 152–178

    Google Scholar 

  • Nawaz K, Hussain K, Choudary N, Majeed A, Ilyas U, Ghani A, Lin F, Ali K, Afghan S, Raza G, Lashari MI (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5(3):177–183

    Google Scholar 

  • Nehra K, Yadav SA, Sehrawat AR, Vashishat RK (2007) Characterization of heat resistant mutant strains of Rhizobium sp. (Cajanus) for growth, survival and symbiotic properties. Indian J Microbiol 47:329–335

    Article  CAS  PubMed  Google Scholar 

  • Nina K, Thomas WK, Prem SB (2014) Beneficial organisms for nutrient uptake. VFRC report 2014/1, virtual fertilizer research center. Wageningen Academic Publishers 63, Washington, DC

    Google Scholar 

  • Nutongkaew T (2014) Effect of inoculum size on production of compost and enzymes from Palm Oil Mill Biogas Sludge mixed with Shredded Palm empty fruit bunches and Decanter cake. Songklanakarin J Sci Technol 36.3:275–281. Academic Search Premier. Web. 13 Dec. 2015

    Google Scholar 

  • O’Brien SL (2016) Spatial scale drives patterns in soil bacterial diversity. Environ Microbiol 18:2039–2051

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263. https://doi.org/10.1038/nrmicro2990

    Article  CAS  PubMed  Google Scholar 

  • Oliverio AM, Bradford MA, Fierer N (2017) Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob Change Biol 23:2117–2129

    Article  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón- Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegradation-life science. Intech-publishing, Rijeka, pp 251–287

    Google Scholar 

  • Pandey J, Singh A (2012) Opportunities and constraints in organic farming: an Indian perspective. J Sci Res 56:47–72

    Google Scholar 

  • Peng S, Biswas JC, LadhaJ K, Gyaneshwar P, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron J 94(4):925–929

    Article  Google Scholar 

  • Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163

    Article  CAS  PubMed  Google Scholar 

  • Pereg L, McMillan M (2015) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem 80:349–358

    Article  CAS  Google Scholar 

  • Pertot I, Alabouvette C, Hinarejos Esteve E, Franca S (2016) Focus group Soil-Borne Diseases mini-paper – the use of microbial biocontrol agents against soil - borne diseases. Agric Innov 117:11

    Google Scholar 

  • Pett-Ridge J, Firestone MK (2005) Redox fluctuation structures microbial communities in a wet tropical soil. Appl Environ Microbiol 71:6998–7007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Radzki W, Manero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104(3):321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. In: Reviews of environmental contamination and toxicology, vol 211. Springer, New York, pp 63–120

    Google Scholar 

  • Rascovan N, Carbonetto B, Perrig D, Díaz M, Canciani W, Abalo M (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6:28084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid MH, Schafer H, Gonzalez J, Wink M (2012) Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 35:98–109

    Article  PubMed  Google Scholar 

  • Rashid A, Bhat RA, Qadri H, Mehmood MA (2019) Environmental and socioeconomic factors induced blood lead in children: an investigation from Kashmir, India. Environ Monit Assess 191(2):76. https://doi.org/10.1007/s10661-019-7220-y

    Article  PubMed  Google Scholar 

  • Rasmann S, Turlings TCJ (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68. https://doi.org/10.1016/j.pbi.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    Article  CAS  PubMed  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martinez-Toledo MV, Gonzalez LJ (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  CAS  Google Scholar 

  • Sahoo RK, Ansari MW, Dangar TK, Mohanty S, Tuteja N (2013a) Phenotypic and molecular characterization of efficient nitrogen fixing Azotobacter strains of the rice fields. Protoplasma. https://doi.org/10.1007/s00709-013-0547-2

  • Sahoo RK, Bhardwaj D, Tuteja N (2013b) Biofertilizers: a sustainable eco-friendly agricultural approach to crop improvement. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer Science plus Business Media, New York, pp 403–432

    Chapter  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of efficient native Azospirillum strains from rice fields for crop improvement. Protoplasma. https://doi.org/10.1007/s00709-013-0607-7

  • Sahu PK, Brahmaprakash GP (2016) Formulations of biofertilizers approaches and advances. In: Microbial inoculants in sustainable agricultural productivity. Springer India, New Delhi, pp 179–198

    Chapter  Google Scholar 

  • Saikia SP, Bora D, Goswami A, Mudoi KD, Gogoi A (2013) A review on the role of Azospirillum in the yield improvement of non-leguminous crops. Afr J Microbiol Res 6:1085–1102

    Google Scholar 

  • Samad A, Trognitz F, Compant S, Antonielli L, Sessitsch A (2017) Shared and host specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol 19:1407–1424

    Article  PubMed  Google Scholar 

  • Santhanam R, van Luu T, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci U S A 112:E5013–E5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos VB, Araujo SF, Leite LF (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geodderma 170:227–231

    Article  CAS  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. https://doi.org/10.1016/j.tplants.2017.09.003

  • Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:1284–1297

    Article  PubMed  Google Scholar 

  • Serna-Chavez HM, Fierer N, van Bodegom PM (2013) Global drivers and patterns of microbial abundance in soil. Global Ecol Biogeog 22:1162–1172

    Article  Google Scholar 

  • Shahaby AF, Alharthi AA, El Tarras AE (2016) Screening of natural bacterial flora of pomegranate roots (Punica granatum L.) and their antibiotic activity in Taif, Saudi Arabia. Int J Curr Microbiol App Sci 5(2):1–6

    Article  CAS  Google Scholar 

  • Shaheen S, Sundari KS (2013) Exploring the applicability of PGPR to remediate residual organophosphate and carbamate pesticides used in agriculture fields. Int J Agric Food Sci Technol 4(10):947–954

    Google Scholar 

  • Sharma P, Sardana V, Kandola SS (2011) Response of groundnut (Arachis hypogaea L.) to Rhizobium inoculation. Libyan Agric Res Centre J Int 2:101–104

    Google Scholar 

  • Sharma S, Gupta R, Dugar G, Srivastava AK (2012) Impact of application of biofertilizers on soil structure and resident microbial community structure and function. In: Bacteria in agrobiology: plant probiotics. Springer, Berlin/Heidelberg, pp 65–77

    Chapter  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2010) Soil reclamation of abandoned mine land by revegetation: a review. Int J Soil Sediment Water 3(2):13

    Google Scholar 

  • Shinwari KI, Shah AU, Afridi MI, Zeeshan M, Hussain H, Hussain J, Ahmad O (2015) Application of plant growth promoting rhizobacteria in bioremediation of heavy metal polluted soil. Asian J Multidiscip Stud 3(4):179

    Google Scholar 

  • Shukla, Livleen (2015) Economically viable mass production of Lignocellulolytic Fungal inoculum for rapid degradation of agrowaste. Curr Sci (00113891) 107.10 (2014):1701–1704. Academic Search Premier. Web. 13 Dec. 2015

    Google Scholar 

  • Singh I, Giri B (2017) Arbuscular mycorrhiza mediated control of plant pathogens. In: Mycorrhiza– nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 131–160

    Chapter  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:1255

    PubMed  PubMed Central  Google Scholar 

  • Singh DP, Singh HB, Prabha R (2016) Microbial inoculants in sustainable agricultural productivity. Springer, New York

    Book  Google Scholar 

  • Singh DV, Bhat RA, Dervash MA, Qadri H, Mehmood MA, Dar GH, Hameed M, Rashid N (2020) Wonders of nanotechnology for remediation of polluted aquatic environs. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 319–339

    Chapter  Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. Australian Centre for International Agricultural Research, Canberra, pp 52–66

    Google Scholar 

  • Sofi NA, Bhat RA, Rashid A, Mir NA, Mir SA, Lone R (2017) Rhizosphere mycorrhizae communities an input for organic agriculture. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 387–413

    Chapter  Google Scholar 

  • Sprent JI, Parsons R (2000) Nitrogen fixation in legume and non-legume trees. Field Crops Res 65:183–196

    Article  Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops Res 65:249–258

    Article  Google Scholar 

  • Sul WJ (2013) Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biol Biochem 65:33–38

    Article  CAS  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugar cane and sugar yields. Field Crops Res 77:43–49

    Article  Google Scholar 

  • Swapna AL (2013) Development of biofertilizers and its future perspective. J Pharm 4:327–332

    Google Scholar 

  • Thakur P, Singh I (2018) Biocontrol of soilborne root pathogens: an overview. In: Root biology, soil biology. Springer, pp 181–220. https://doi.org/10.1007/978-3-319-75910-4_7

  • Thamer S, Schädler M, Bonte D, Ballhorn DJ (2011) Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 34:1209–1219

    Google Scholar 

  • Thomas L, Singh I (2019) Microbial biofertilizers: types and applications

    Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Trivedi C, Hamonts K, Anderson IC, Singh BK (2017) Keystone microbial taxa regulate the invasion of a fungal pathogen in agroecosystems. Soil Biol Biochem 111:10–14

    Article  CAS  Google Scholar 

  • United Nations (2013) World population prospects: the 2012 revision, highlights and advance tables. Working paper no. ESA/P/WP. 228. http://www.un.org/en/development/desa/population. Accessed 22 Apr 2016

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Res 65:211–228

    Article  Google Scholar 

  • Vandenkoornhuyse et al (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206. https://doi.org/10.1111/nph.13312

    Article  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182

    Article  CAS  PubMed  Google Scholar 

  • Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Resour J 1(1):35–38

    Article  Google Scholar 

  • Weekley J, Gabbard J, Nowak J (2012) Micro-level management of agricultural inputs: emerging approaches. Agronomy 2(4):321–357

    Article  Google Scholar 

  • Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:20

    Google Scholar 

  • Youssef MM, Eissa MF (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review. E3 J Biotechnol Pharm Res 5(1):1–6

    Google Scholar 

  • Zheng XY, Sinclair JB (1996) Chemotactic response of Bacillus megaterium strain B153-2-2 to soybean root and seed exudates. Physiol Mol Plant Pathol 48:21–35. https://doi.org/10.1006/pmpp.1996.0003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nisar, B., Rashid, S., Majeed, L.R., Pahalvi, H.N., Kamili, A.N. (2021). Introduction to Microbiota and Biofertilizers. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds) Microbiota and Biofertilizers, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-61010-4_10

Download citation

Publish with us

Policies and ethics