Skip to main content

Emerging Meningioma Therapies I: Precision Medicine, Targeted Therapies, and Mutation-Specific Approaches

  • Chapter
  • First Online:
Meningiomas
  • 321 Accesses

Abstract

Traditional chemotherapies and hormonal agents have been associated with disappointing results in the treatment of progressive/recurrent meningioma, and there are no FDA-approved systemic treatments for this indication. The development of effective systemic therapies remains an area of active investigation in the field. Recently, advances in tools for molecular characterization of cancer have improved our understanding of the underlying molecular landscape of meningiomas and their progression to more aggressive phenotypes. Large-scale genetic analyses have revealed that mutations in the NF2 gene are found in 50–60% of meningiomas (both inherited and sporadic) and that mutations in other genes such as TRAF7, SMO, AKT1, and KLF4 are often found in tumors without NF2 mutations. Clinical trials using targeted therapies aimed at disrupting the signaling pathways affected by these mutations are underway. Furthermore, genetic and epigenetic information, including the above mutations, methylation status, and mutational load, have all been identified as potential biomarkers to predict prognosis and recurrence and may provide new avenues for therapeutic intervention. In this chapter, we describe emerging systemic therapies and treatment strategies based on the current understanding of the genetic and molecular changes underlying meningioma tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodwin JW, Crowley J, Eyre HJ, Stafford B, Jaeckle KA, Townsend JJ. A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: a Southwest Oncology Group study. J Neuro-Oncol. 1993;15(1):75–7.

    Article  CAS  Google Scholar 

  2. Grunberg SM, Weiss MH, Spitz IM, Ahmadi J, Sadun A, Russell CA, et al. Treatment of unresectable meningiomas with the antiprogesterone agent mifepristone. J Neurosurg. 1991 Jun;74(6):861–6.

    Article  CAS  PubMed  Google Scholar 

  3. Hahn BM, Schrell UM, Sauer R, Fahlbusch R, Ganslandt O, Grabenbauer GG. Prolonged oral hydroxyurea and concurrent 3d-conformal radiation in patients with progressive or recurrent meningioma: results of a pilot study. J Neuro-Oncol. 2005;74(2):157–65.

    Article  CAS  Google Scholar 

  4. Ji Y, Rankin C, Grunberg S, Sherrod AE, Ahmadi J, Townsend JJ, et al. Double-blind phase III randomized trial of the antiprogestin agent mifepristone in the treatment of unresectable meningioma: SWOG S9005. J Clin Oncol. 2015;33(34):4093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnson DR, Kimmel DW, Burch PA, Cascino TL, Giannini C, Wu W, et al. Phase II study of subcutaneous octreotide in adults with recurrent or progressive meningioma and meningeal hemangiopericytoma. Neuro-Oncology. 2011;13(5):530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaley TJ, Wen P, Schiff D, Ligon K, Haidar S, Karimi S, et al. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro-Oncology. 2014;17(1):116–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Karsy M, Guan J, Cohen A, Colman H, Jensen RL. Medical management of meningiomas: current status, failed treatments, and promising horizons. Neurosurg Clin N Am. 2016;27(2):249–60.

    Article  PubMed  Google Scholar 

  8. Loven D, Hardoff R, Sever ZB, Steinmetz AP, Gornish M, Rappaport ZH, et al. Non-resectable slow-growing meningiomas treated by hydroxyurea. J Neuro-Oncol. 2004;67(1–2):221–6.

    Article  Google Scholar 

  9. Nayak L, Iwamoto FM, Rudnick JD, Norden AD, Lee EQ, Drappatz J, et al. Atypical and anaplastic meningiomas treated with bevacizumab. J Neuro-Oncol. 2012;109(1):187–93.

    Article  CAS  Google Scholar 

  10. Norden AD, Ligon KL, Hammond SN, Muzikansky A, Reardon DA, Kaley TJ, et al. Phase II study of monthly pasireotide LAR (SOM230C) for recurrent or progressive meningioma. Neurology. 2015;84(3):280–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Norden AD, Raizer JJ, Abrey LE, Lamborn KR, Lassman AB, Chang SM, et al. Phase II trials of erlotinib or gefitinib in patients with recurrent meningioma. J Neuro-Oncol. 2010;96(2):211–7.

    Article  CAS  Google Scholar 

  12. Reardon DA, Norden AD, Desjardins A, Vredenburgh JJ, Herndon JE 2nd, Coan A, et al. Phase II study of Gleevec® plus hydroxyurea (HU) in adults with progressive or recurrent meningioma. J Neuro-Oncol. 2012;106(2):409–15.

    Article  CAS  Google Scholar 

  13. Swinnen L, Rankin C, Rushing E, Laura H, Damek D, Barger G. Southwest oncology group s9811: a phase II study of hydroxyurea for unresectable meningioma. J Clin Oncol. 2009;27:15s.

    Article  Google Scholar 

  14. Wen PY, Quant E, Drappatz J, Beroukhim R, Norden AD. Medical therapies for meningiomas. J Neuro-Oncol. 2010;99(3):365–78.

    Article  CAS  Google Scholar 

  15. Wen PY, Yung WA, Lamborn KR, Norden AD, Cloughesy TF, Abrey LE, et al. Phase II study of imatinib mesylate for recurrent meningiomas (North American Brain Tumor Consortium study 01-08). Neuro-Oncology. 2009;11(6):853–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q, et al. The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus. 2011;30(5):E6.

    Article  PubMed  Google Scholar 

  17. Domingues P, González-Tablas M, Otero Á, Pascual D, Ruiz L, Miranda D, et al. Genetic/molecular alterations of meningiomas and the signaling pathways targeted. Oncotarget. 2015;6(13):10671.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):1077–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weber RG, Boström J, Wolter M, Baudis M, Collins VP, Reifenberger G, et al. Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci U S A. 1997;94(26):14719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mawrin C, Perry A. Pathological classification and molecular genetics of meningiomas. J Neuro-Oncol. 2010;99(3):379–91.

    Article  CAS  Google Scholar 

  22. Curto M, McClatchey A. Nf2/Merlin: a coordinator of receptor signalling and intercellular contact. Br J Cancer. 2008;98(2):256.

    Article  CAS  PubMed  Google Scholar 

  23. James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachamimov AO, et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol. 2009;29(15):4250–61. https://doi.org/10.1128/MCB.01581-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suppiah S, Nassiri F, Bi WL, Dunn IF, Hanemann CO, Horbinski CM, et al. Molecular and translational advances in meningiomas. Neuro Oncol. 2019;21(Supplement_1):i4–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rong R, Tang X, Gutmann DH, Ye K. Neurofibromatosis 2 (NF2) tumor suppressor merlin inhibits phosphatidylinositol 3-kinase through binding to PIKE-L. Proc Natl Acad Sci. 2004;101(52):18200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cooper J, Giancotti FG. Molecular insights into NF2/Merlin tumor suppressor function. FEBS Lett. 2014;588(16):2743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goutagny S, Yang HW, Zucman-Rossi J, Chan J, Dreyfuss JM, Park PJ, et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res. 2010;16(16):4155–64.

    Article  CAS  PubMed  Google Scholar 

  28. Leuraud P, Dezamis E, Aguirre-Cruz L, Taillibert S, Lejeune J, Robin E, et al. Prognostic value of allelic losses and telomerase activity in meningiomas. J Neurosurg. 2004;100(2):303.

    Article  CAS  PubMed  Google Scholar 

  29. Poulikakos P, Xiao G, Gallagher R, Jablonski S, Jhanwar S, Testa J. Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK. Oncogene. 2006;25(44):5960.

    Article  CAS  PubMed  Google Scholar 

  30. Shapiro IM, Kolev VN, Vidal CM, Kadariya Y, Ring JE, Wright Q, et al. Merlin deficiency predicts FAK inhibitor sensitivity: a synthetic lethal relationship. Sci Transl Med. 2014;6(237):237ra68. https://doi.org/10.1126/scitranslmed.3008639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Graillon T, Sanson M, Peyre M, Peyrière H, Autran D, Kalamarides M, et al. A phase II of everolimus and octreotide for patients with refractory and documented progressive meningioma (CEVOREM). J Clin Oncol. 2017;35(15_suppl):2011.

    Article  Google Scholar 

  32. Graillon T, Defilles C, Mohamed A, Lisbonis C, Germanetti A-L, Chinot O, et al. Combined treatment by octreotide and everolimus: Octreotide enhances inhibitory effect of everolimus in aggressive meningiomas. J Neuro-Oncol. 2015;124(1):33–43.

    Article  CAS  Google Scholar 

  33. Graillon T, Sanson M, Peyre M, Peyriere H, Autran D, Kalamarides M, et al. A phase II of everolimus and octreotide for patients with refractory and documented progressive meningioma (CEVOREM). J Clin Oncol. 2017;35(15_suppl):2011.

    Article  Google Scholar 

  34. Beauchamp RL, James MF, DeSouza PA, Wagh V, Zhao WN, Jordan JT, et al. A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas. Oncotarget. 2015;6(19):16981–97.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Clark VE, Harmancı AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet. 2016;48(10):1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yesilöz Ü, Kirches E, Hartmann C, Scholz J, Kropf S, Sahm F, et al. Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro-Oncology. 2017;19(8):1088–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366(23):2171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I, et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog–subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol. 2015;33(24):2646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnson MD, Okediji E, Woodard A, Toms SA, Allen GS. Evidence for phosphatidylinositol 3-kinase—Akt—p70S6K pathway activation and transduction of mitogenic signals by platelet-derived growth factor in human meningioma cells. J Neurosurg. 2002;97(3):668–75.

    Article  CAS  PubMed  Google Scholar 

  40. Hyman DM, Smyth LM, Donoghue MT, Westin SN, Bedard PL, Dean EJ, et al. AKT inhibition in solid tumors with AKT1 mutations. J Clin Oncol. 2017;35(20):2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weller M, Roth P, Sahm F, Burghardt I, Schuknecht B, Rushing EJ, et al. Durable control of metastatic AKT1-Mutant WHO Grade 1 meningothelial meningioma by the AKT inhibitor, AZD5363. J Natl Cancer Inst. 2017;109(3):djw320.

    Article  CAS  Google Scholar 

  42. Banerjee R, Lohse CM, Kleinschmidt-DeMasters BK, Scheithauer BW. A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol. 2002;12(2):183–90.

    PubMed  Google Scholar 

  43. Boström J, Meyer-Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P, et al. Alterations of the tumor suppressor genes CDKN2A (p16INK4a), p14ARF, CDKN2B (p15INK4b), and CDKN2C (p18INK4c) in atypical and anaplastic meningiomas. Am J Pathol. 2001;159(2):661–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lamszus K. Meningioma pathology, genetics, and biology. J Neuropathol Exp Neurol. 2004;63(4):275–86.

    Article  PubMed  Google Scholar 

  45. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339(6122):957–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122):959–61.

    Article  CAS  PubMed  Google Scholar 

  47. Vinagre J, Almeida A, Pópulo H, Batista R, Lyra J, Pinto V, et al. Frequency of TERT promoter mutations in human cancers. Nat Commun. 2013;4:2185.

    Article  PubMed  CAS  Google Scholar 

  48. Sahm F, Schrimpf D, Olar A, Koelsche C, Reuss D, Bissel J, et al. TERT promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst. 2015;108(5):djv377.

    Article  PubMed Central  CAS  Google Scholar 

  49. Lu VM, Goyal A, Lee A, Jentoft M, Quinones-Hinojosa A, Chaichana KL. The prognostic significance of TERT promoter mutations in meningioma: a systematic review and meta-analysis. J Neuro-Oncol. 2019;142(1):1–10.

    Article  CAS  Google Scholar 

  50. Shankar GM, Abedalthagafi M, Vaubel RA, Merrill PH, Nayyar N, Gill CM, et al. Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro-Oncology. 2017;19(4):535–45.

    CAS  PubMed  Google Scholar 

  51. Shankar GM, Santagata S. BAP1 mutations in high-grade meningioma: implications for patient care. Neuro-Oncology. 2017;19(11):1447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ismail IH, Davidson R, Gagné J-P, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res. 2014;74(16):4282–94.

    Article  CAS  PubMed  Google Scholar 

  53. Smith MJ, Wallace AJ, Bennett C, Hasselblatt M, Elert-Dobkowska E, Evans LT, et al. Germline SMARCE1 mutations predispose to both spinal and cranial clear cell meningiomas. J Pathol. 2014;234(4):436–40.

    Article  CAS  PubMed  Google Scholar 

  54. Smith MJ, Ahn S, Lee JI, Bulman M, Plessis D, Suh YL. SMARCE 1 mutation screening in classification of clear cell meningiomas. Histopathology. 2017;70(5):814–20.

    Article  PubMed  Google Scholar 

  55. Ohba S, Sasaki H, Kimura T, Ikeda E, Kawase T. Clear cell meningiomas: three case reports with genetic characterization and review of the literature. Neurosurgery. 2010;67(3):E870–E1.

    Article  PubMed  Google Scholar 

  56. Smith MJ. Germline and somatic mutations in meningiomas. Cancer Genet. 2015;208(4):107–14.

    Article  CAS  PubMed  Google Scholar 

  57. Aavikko M, Li S-P, Saarinen S, Alhopuro P, Kaasinen E, Morgunova E, et al. Loss of SUFU function in familial multiple meningioma. Am J Human Genet. 2012;91(3):520–6.

    Article  CAS  Google Scholar 

  58. Sahm F, Schrimpf D, Stichel D, Jones DT, Hielscher T, Schefzyk S, et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 2017;18(5):682–94.

    Article  CAS  PubMed  Google Scholar 

  59. Harmancı AS, Youngblood MW, Clark VE, et al. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nat Commun. 2017;8(1):1–14. https://doi.org/10.1038/ncomms16215.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Omuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roque, A.M., Omuro, A. (2020). Emerging Meningioma Therapies I: Precision Medicine, Targeted Therapies, and Mutation-Specific Approaches. In: Moliterno, J., Omuro, A. (eds) Meningiomas. Springer, Cham. https://doi.org/10.1007/978-3-030-59558-6_14

Download citation

Publish with us

Policies and ethics