Skip to main content
Log in

Combined treatment by octreotide and everolimus: Octreotide enhances inhibitory effect of everolimus in aggressive meningiomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Treatment for recurrent and aggressive meningiomas remains an unmet medical need in neuro-oncology, and chemotherapy exhibits limited clinical activity, if any. Merlin expression, encoded by the NF2 gene, is lost in a majority of meningiomas, and merlin is a negative regulator of mTORC1. The sst2 somatostatin receptor, targeted by octreotide, is highly expressed in meningiomas. To investigate new therapeutic strategies, we evaluated the activity of everolimus (mTOR inhibitor), BKM-120 and BEZ-235 (new Pi3K/Akt/mTOR inhibitors), octreotide and a combined treatment (octreotide plus everolimus), on cell proliferation, signaling pathways, and cell cycle proteins, respectively. The in vitro study was conducted on human meningioma primary cells extracted from fresh tumors, allowing the assessment of somatostatin analogs at the concentration levels used in patients. The results were correlated to WHO grades. Further, everolimus decreased cell viability of human meningiomas, but concomitantly, induced Akt activation, reducing the antiproliferative effect of the drug. The new Pi3K inhibitors were not more active than everolimus alone, limiting their clinical relevance. In contrast, a clear cooperative inhibitory effect of octreotide and everolimus was observed on cell proliferation in all tested meningiomas, including WHO grades II–III. Octreotide not only reversed everolimus-induced Akt phosphorylation but also displayed additive and complementary effects with everolimus on downstream proteins involved in translation (4EB-P1), and controlling cell cycle (p27Kip1 and cyclin D1). We have demonstrated a co-operative action between everolimus and octreotide on cell proliferation in human meningiomas, including aggressive ones, establishing the basis for a clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marosi C, Hassler M, Roessler K, Reni M, Sant M, Mazza E, Vecht C (2008) Meningioma. Crit Rev Oncol Hematol 67:153–171. doi:10.1016/j.critrevonc.2008.01.010

    Article  PubMed  Google Scholar 

  2. Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391. doi:10.1007/s11060-010-0342-2

    Article  CAS  PubMed  Google Scholar 

  3. Kaley TJ, Wen P, Schiff D, Ligon K, Haidar S, Karimi S, Lassman AB, Nolan CP, DeAngelis LM, Gavrilovic I, Norden A, Drappatz J, Lee EQ, Purow B, Plotkin SR, Batchelor T, Abrey LE, Omuro A (2015) Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro Oncol 17:116–121. doi:10.1093/neuonc/nou148

    Article  PubMed  Google Scholar 

  4. Hansson CM, Buckley PG, Grigelioniene G, Piotrowski A, Hellstrom AR, Mantripragada K, Jarbo C, Mathiesen T, Dumanski JP (2007) Comprehensive genetic and epigenetic analysis of sporadic meningioma for macro-mutations on 22q and micro-mutations within the NF2 locus. BMC Genom 8:16. doi:10.1186/1471-2164-8-16

    Article  Google Scholar 

  5. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, Ligon KL, Palescandolo E, Van Hummelen P, Ducar MD, Raza A, Sunkavalli A, Macconaill LE, Stemmer-Rachamimov AO, Louis DN, Hahn WC, Dunn IF, Beroukhim R (2013) Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 45:285–289. doi:10.1038/ng.2526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yang C, Asthagiri AR, Iyer RR, Lu J, Xu DS, Ksendzovsky A, Brady RO, Zhuang Z, Lonser RR (2011) Missense mutations in the NF2 gene result in the quantitative loss of merlin protein and minimally affect protein intrinsic function. Proc Natl Acad Sci USA 108:4980–4985. doi:10.1073/pnas.1102198108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10:1204–1212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jin H, Sperka T, Herrlich P, Morrison H (2006) Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature 442:576–579. doi:10.1038/nature04856

    Article  CAS  PubMed  Google Scholar 

  9. Rong R, Tang X, Gutmann DH, Ye K (2004) Neurofibromatosis 2 (NF2) tumor suppressor merlin inhibits phosphatidylinositol 3-kinase through binding to PIKE-L. Proc Natl Acad Sci USA 101:18200–18205. doi:10.1073/pnas.0405971102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. McClatchey AI, Giovannini M (2005) Membrane organization and tumorigenesis–the NF2 tumor suppressor, Merlin. Genes Dev 19:2265–2277. doi:10.1101/gad.1335605

    Article  CAS  PubMed  Google Scholar 

  11. Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG (2009) Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol 29:4235–4249. doi:10.1128/MCB.01578-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachamimov AO, Gusella JF, Ramesh V (2009) NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 29:4250–4261. doi:10.1128/MCB.01581-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bousquet C, Lasfargues C, Chalabi M, Billah SM, Susini C, Vezzosi D, Caron P, Pyronnet S (2012) Clinical review: current scientific rationale for the use of somatostatin analogs and mTOR inhibitors in neuroendocrine tumor therapy. J Clin Endocrinol Metab 97:727–737. doi:10.1210/jc.2011-2088

    Article  CAS  PubMed  Google Scholar 

  14. Moreno A, Akcakanat A, Munsell MF, Soni A, Yao JC, Meric-Bernstam F (2008) Antitumor activity of rapamycin and octreotide as single agents or in combination in neuroendocrine tumors. Endocr Relat Cancer 15:257–266. doi:10.1677/ERC-07-0202

    Article  CAS  PubMed  Google Scholar 

  15. Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 121:1231–1241. doi:10.1172/JCI44145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Schulz S, Pauli SU, Handel M, Dietzmann K, Firsching R, Hollt V (2000) Immunohistochemical determination of five somatostatin receptors in meningioma reveals frequent overexpression of somatostatin receptor subtype sst2A. Clin Cancer Res 6:1865–1874

    CAS  PubMed  Google Scholar 

  17. Dutour A, Kumar U, Panetta R, Ouafik L, Fina F, Sasi R, Patel YC (1998) Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer 76:620–627. doi:10.1002/(SICI)1097-0215(19980529)76:5<620:AID-IJC2>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  18. Putman M, Burton R, Nahm MH (2005) Simplified method to automatically count bacterial colony forming unit. J Immunol Methods 302:99–102. doi:10.1016/j.jim.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  19. Defilles C, Lissitzky JC, Montero MP, Andre F, Prevot C, Delamarre E, Marrakchi N, Luis J, Rigot V (2009) alphavbeta5/beta6 integrin suppression leads to a stimulation of alpha2beta1 dependent cell migration resistant to PI3 K/Akt inhibition. Exp Cell Res 315:1840–1849. doi:10.1016/j.yexcr.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  20. Saveanu A, Lavaque E, Gunz G, Barlier A, Kim S, Taylor JE, Culler MD, Enjalbert A, Jaquet P (2002) Demonstration of enhanced potency of a chimeric somatostatin-dopamine molecule, BIM-23A387, in suppressing growth hormone and prolactin secretion from human pituitary somatotroph adenoma cells. J Clin Endocrinol Metab 87:5545–5552. doi:10.1210/jc.2002-020934

    Article  CAS  PubMed  Google Scholar 

  21. Markman B, Dienstmann R, Tabernero J (2010) Targeting the PI3 K/Akt/mTOR pathway–beyond rapalogs. Oncotarget 1:530–543

    PubMed Central  PubMed  Google Scholar 

  22. Blankenstein MA, Verheijen FM, Jacobs JM, Donker TH, van Duijnhoven MW, Thijssen JH (2000) Occurrence, regulation, and significance of progesterone receptors in human meningioma. Steroids 65:795–800

    Article  CAS  PubMed  Google Scholar 

  23. Barlier A, Gunz G, Zamora AJ, Morange-Ramos I, Figarella-Branger D, Dufour H, Enjalbert A, Jaquet P (1998) Pronostic and therapeutic consequences of Gs alpha mutations in somatotroph adenomas. J Clin Endocrinol Metab 83:1604–1610. doi:10.1210/jcem.83.5.4797

    CAS  PubMed  Google Scholar 

  24. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, Hoang-Xuan K, Demczuk S, Desmaze C, Plougastel B et al (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363:515–521. doi:10.1038/363515a0

    Article  CAS  PubMed  Google Scholar 

  25. Kalamarides M, Niwa-Kawakita M, Leblois H, Abramowski V, Perricaudet M, Janin A, Thomas G, Gutmann DH, Giovannini M (2002) Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev 16:1060–1065. doi:10.1101/gad.226302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. James MF, Stivison E, Beauchamp R, Han S, Li H, Wallace MR, Gusella JF, Stemmer-Rachamimov AO, Ramesh V (2012) Regulation of mTOR complex 2 signaling in neurofibromatosis 2-deficient target cell types. Mol Cancer Res 10:649–659. doi:10.1158/1541-7786.MCR-11-0425-T

    Article  CAS  PubMed  Google Scholar 

  27. Wu YT, Ouyang W, Lazorchak AS, Liu D, Shen HM, Su B (2011) mTOR complex 2 targets Akt for proteasomal degradation via phosphorylation at the hydrophobic motif. J Biol Chem 286:14190–14198. doi:10.1074/jbc.M111.219923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pachow D, Andrae N, Kliese N, Angenstein F, Stork O, Wilisch-Neumann A, Kirches E, Mawrin C (2013) mTORC1 inhibitors suppress meningioma growth in mouse models. Clin Cancer Res 19:1180–1189. doi:10.1158/1078-0432.CCR-12-1904

    Article  CAS  PubMed  Google Scholar 

  29. Karajannis MA, Legault G, Hagiwara M, Giancotti FG, Filatov A, Derman A, Hochman T, Goldberg JD, Vega E, Wisoff JH, Golfinos JG, Merkelson A, Roland JT, Allen JC (2014) Phase II study of everolimus in children and adults with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol 16:292–297. doi:10.1093/neuonc/not150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Saveanu A, Gunz G, Dufour H, Caron P, Fina F, Ouafik L, Culler MD, Moreau JP, Enjalbert A, Jaquet P (2001) Bim-23244, a somatostatin receptor subtype 2- and 5-selective analog with enhanced efficacy in suppressing growth hormone (GH) from octreotide-resistant human GH-secreting adenomas. J Clin Endocrinol Metab 86:140–145. doi:10.1210/jcem.86.1.7099

    CAS  PubMed  Google Scholar 

  31. O’Toole D, Couvelard A, Rebours V, Zappa M, Hentic O, Hammel P, Levy P, Bedossa P, Raymond E, Ruszniewski P (2010) Molecular markers associated with response to chemotherapy in gastro-entero-pancreatic neuroendocrine tumors. Endocr Relat Cancer 17:847–856. doi:10.1677/ERC-09-0204

    Article  PubMed  Google Scholar 

  32. Bousquet C, Guillermet-Guibert J, Saint-Laurent N, Archer-Lahlou E, Lopez F, Fanjul M, Ferrand A, Fourmy D, Pichereaux C, Monsarrat B, Pradayrol L, Esteve JP, Susini C (2006) Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3 K pathway. EMBO J 25:3943–3954. doi:10.1038/sj.emboj.7601279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Choo AY, Blenis J (2009) Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle 8:567–572

    Article  CAS  PubMed  Google Scholar 

  34. Gingras AC, Raught B, Sonenberg N (2001) Control of translation by the target of rapamycin proteins. Prog Mol Subcell Biol 27:143–174

    Article  CAS  PubMed  Google Scholar 

  35. Pyronnet S, Bousquet C, Najib S, Azar R, Laklai H, Susini C (2008) Antitumor effects of somatostatin. Mol Cell Endocrinol 286:230–237. doi:10.1016/j.mce.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  36. Azar R, Susini C, Bousquet C, Pyronnet S (2010) Control of contact-inhibition by 4E-BP1 upregulation. Cell Cycle 9:1241–1245

    Article  CAS  PubMed  Google Scholar 

  37. Nho RS, Peterson M (2011) Eukaryotic translation initiation factor 4E binding protein 1 (4EBP-1) function is suppressed by Src and protein phosphatase 2A (PP2A) on extracellular matrix. J Biol Chem 286:31953–31965. doi:10.1074/jbc.M111.222299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Pavel ME, Hainsworth JD, Baudin E, Peeters M, Horsch D, Winkler RE, Klimovsky J, Lebwohl D, Jehl V, Wolin EM, Oberg K, Van Cutsem E, Yao JC (2011) Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumors associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378:2005–2012. doi:10.1016/S0140-6736(11)61742-X

    Article  CAS  PubMed  Google Scholar 

  39. Yao JC, Phan AT, Chang DZ, Wolff RA, Hess K, Gupta S, Jacobs C, Mares JE, Landgraf AN, Rashid A, Meric-Bernstam F (2008) Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol 26:4311–4318. doi:10.1200/JCO.2008.16.7858

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Tumor specimens were stored in the AP-HM tumor bank AC 2013-1786. We thank Gary Burkhart and Enago for proofreading. The study was partially supported by Novartis International.

Financial support for this study

Novartis France, Centre National de la Recherche Scientifique (CNRS UMR 7286), Aix Marseille University and Association pour le Développement des Recherches Biologiques et Médicales au Centre Hospitalier Régional de Marseille (ADEREM). Amira MOHAMED was a recipient of a fellowship from the Association pour le Developpement des Recherches Biologiques et Medicales au Centre Hospitalier Régional de Marseille (2010/2011) through funding from Novartis.

Funding Source

Novartis funding was used for a fellowship for a PhD student (A. Mohamed).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Graillon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graillon, T., Defilles, C., Mohamed, A. et al. Combined treatment by octreotide and everolimus: Octreotide enhances inhibitory effect of everolimus in aggressive meningiomas. J Neurooncol 124, 33–43 (2015). https://doi.org/10.1007/s11060-015-1812-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1812-3

Keywords

Navigation