Skip to main content

Abstract

Common bean (Phaseolus vulgaris L) is the most important food legume for direct human consumption, provides significant quantities of protein and energy, and is a source of vitamins and minerals including Fe and Zn. In addition to these nutritional components, common beans are rich in a variety of several phytochemicals with potential health benefits such as polyphenolic compounds, fiber, lectins, and trypsin inhibitors. Mineral deficiencies in human populations are one of the greatest health concerns given that half the current population of the world is affected by some sort of mineral deficiency. Thus, the major staples that have been targeted for mineral biofortification breeding at the international scale include mainly the seed crops of rice, wheat, maize, and common bean along with related cereals and legumes in certain more intensive national research programs that are part of the overall HarvestPlus biofortification program. Therefore, the scope of this chapter is to review the role of some bioactive compounds present in common beans, biochemistry of the biofortification traits, and their analytical methods. The main goals of mineral biofortification have been to increase the concentration of iron or zinc in certain major cereals and legumes. In humans, iron is essential for preventing anemia and for the proper functioning of many metabolic processes, whereas zinc is essential for adequate growth and for resistance to gastroenteric and respiratory infections, especially in children. This book chapter outlines the advantages and needs of mineral biofortification in common bean, starting with the steps of breeding for traits such as germplasm screening, inheritance, biochemical analytical methods, molecular approaches, and future challenges and finishing with product development in the form of new biofortified varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akillioglu HG, Karakaya S (2010) Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Sci Biotechnol 19:633–639. [CrossRef]

    Article  CAS  Google Scholar 

  • Aragao FJL, Barros LMG, De Sousa MV, Grossi de Sa MF, Almeida ERP, Gander ES et al (1999) Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Genet Mol Biol 22(3):445–449. https://doi.org/10.1590/S1415-47571999000300026

  • Association of Official Analytical Chemists (AOAC) Method 990.08; 9.2.39. Minerals quantification (ICP) – Official Methods of Analysis of AOAC International. 18th edn. AOAC International; Gaithersburg, 2005. p 46

    Google Scholar 

  • Banziger M, Long J (2000) The potential of increasing the iron and zinc density of maize through plant breeding. Food Nutr Bull 21:397–400

    Google Scholar 

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391. https://doi.org/10.1177/156482650002100408

    Article  Google Scholar 

  • Beebe S, Rojas-Pierce M, Yan X, Blair MW, Pedraza F, Muñoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Science 46:413–423

    Google Scholar 

  • Beninger M, Setimela PS, Hodson H, Vivek H (2005) Breeding for improved abiotic stress tolerance in maize adapted to southern africa. Agric Water Manag 80:212–224

    Google Scholar 

  • Blair MW (2013) Mineral biofortification strategies for food Staples: the example of common bean. J Agric Food Chem 61:8287–8294. https://doi.org/10.1021/jf400774y

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125:1015–1031. https://doi.org/10.1007/s00122-012-1891-x

    Article  PubMed  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored mi-crosatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113(1):100–109

    Google Scholar 

  • Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23(2):197–207. https://doi.org/10.1007/s11032-008-9225-z

    Article  CAS  Google Scholar 

  • Blair MW, Knewtson SJB, Astudillo C, Li C-M, Fernandez AC, Grusak MA (2010a) Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol 10:215. https://doi.org/10.1186/1471-2229-10-215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Medina JI, Astudillo C, Rengifo J, Beebe SE, Machado G et al (2010b) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121:1059–1070. https://doi.org/10.1007/s00122-010-1371-0

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Astudillo C, Rengifo J, Beebe SE, Graham R (2011) QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122:511–521. https://doi.org/10.1007/s00122-010-1465-8

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Herrera AL, Sandoval TA, Caldas GV, Filleppi M, Sparvoli F (2012) Inheritance of seed phytate and phosphorus levels in common bean (Phaseolus vulgaris L.) and association with newly-mapped candidate genes. Mol Breed 30:1265–1277. https://doi.org/10.1007/s11032-012-9713-z

    Article  CAS  Google Scholar 

  • Blair MW, Izquierdo P, Astudillo C, Grusak MA (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275. https://doi.org/10.3389/fpls.2013.00275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411. https://doi.org/10.1079/PNS2003262

    Article  PubMed  Google Scholar 

  • Bouis HE (2007) The potential of genetically modified food crops to improve human nutrition in developing countries. J Dev Stud 43:79–96. https://doi.org/10.1080/00220380601055585

    Article  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(Suppl. 1):S31–S40

    Article  PubMed  Google Scholar 

  • Broughton WJ, Hernandez G, Blair MW, Beebe SE, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.) – model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Gokmen O, Ozturk L, Horst WJ (2010) Bio fortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    Google Scholar 

  • Cardador-Martinez A, Castano-Tostado E, Loarca-Pina G (2002) Antimutagenic activity of natural phenolic compounds present in the common bean (Phaseolus vulgaris) against aflatoxin B1. Food Addit Contam 19:62–69. [CrossRef] [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • Carolina AR, Andrea C. Fernandez, Karen A. Cichy (2015) Transcriptome Characterization of Developing Bean (Phaseolus vulgaris L.) Pods from Two Genotypes with Contrasting Seed Zinc Concentrations. PLOS ONE. https://doi.org/10.1371/journal.pone.0137157

  • Choi EY, Graham RD, Stangoulis JCR (2007) Rapid semi-quantitative screening methods for determination of iron and zinc in grains and staple foods. J Food Compos Anal 20:496–505

    Article  CAS  Google Scholar 

  • Cichy KA, Forster S, Grafton KF, Hosfield GL (2005) Inheritance of seed zinc accumulation in navy bean. Crop Sci 45(3):864–870. https://doi.org/10.2135/cropsci2004.0104

    Article  CAS  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  • Cubadda RE, Carcea M, Marconi E, Trivisonno MC (2007) Influence of protein content on durum wheat gluten strength determined by the SDS sedimentation test and by other methods. Cereal Foods World 52(1):273–277

    Google Scholar 

  • Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Andersson M, Pfieffer W (2012a) Nutritionally enhanced staple food crops. Plant Breed Rev 34:169–262. https://doi.org/10.1002/9781118358566.ch

    Article  Google Scholar 

  • Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Andersson M, Pfieffer W (2012b) Nutritionally enhanced staple food crops. Plant Breed Rev 34:169–262. https://doi.org/10.1002/9781118358566.ch3

    Article  Google Scholar 

  • FAO (2018) World food and agriculture – statistical pocketbook 2018. Rome, p 254. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Forster SM, Moraghan JT, Grafton KF (2002) Inheritance of seed Zn accumulation in navy bean. Annu Rep Bean Improv Coop 45:30–31

    Google Scholar 

  • Freyre R, Skroch PW, Geffroy V, Adam-Blondon A-F, Shirmohamadali A, Johnson WC, Llaca V, Nodari RO, Pereira PA, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos CE, Gepts P (1998) Towards an integrated linkage map of common bean: 4. Dev Core Linkage Map Alignment RFLP Maps Theor Appl Genet 97:847–856

    CAS  Google Scholar 

  • Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and ca in plants for human nutrition. J Sci Food Agric 80(7):861–879

    Article  CAS  Google Scholar 

  • Gelin JR, Forster S, Grafton KF, McClean P, Rojas-Cifuentes GA (2006) Analysis of seed-zinc and other nutrients in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci 47:1361–1366. https://doi.org/10.2135/cropsci2006.08.0510

    Article  CAS  Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aats MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant 126:407–417

    Article  CAS  Google Scholar 

  • Graham RD, Senadhira D, Beebe SE, Iglesias C, Ortiz-Monasterio I (1999) Breeding for micronutrient density inedible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80

    Article  Google Scholar 

  • Gregorio GB (2002) Progress in breeding for trace minerals in staple crops. J Nutr 132:500S–502S

    Article  PubMed  Google Scholar 

  • Guerrero-Romero F, Rodríguez-Morán M (2005) Complementary therapies for diabetes: the case for chromium, magnesium, and antioxidants. Arch Med Res 36:250–257

    Article  CAS  PubMed  Google Scholar 

  • Guild GE, Paltridge NG, Andersson MS et al (2017) An energy-dispersive X-ray fluorescence method for analysing Fe and Zn in common bean, maize and cowpea biofortification programs. Plant Soil 419:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzmán-Maldonado SH, Acosta-Gallegos J, Paredes-López O (2000) Protein and mineral content of a novel collection of wild and weedy common bean (Phaseolus vulgaris L.). J Sci Food Agric 80:1874–1881

    Google Scholar 

  • Guzmán MSH, Gallegos JAA, Muñoz MDLÁÁ, Delgado SG, Piña GL (2002) Calidad alimentariay potencial nutracéutico del frijol (Phaseolus vulgaris L.) [food quality and nutraceutical potential of common bean (Phaseolus vulgaris L.)]. Agric Téc Méx 28:159–173

    Google Scholar 

  • Guzman-Maldonado SH, Martinez O, AcostaGallegos JA, Guevara-Lara F, Paredes-Lopez O (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43(3):1029–1035

    Article  CAS  Google Scholar 

  • Guzman-Maldonado SH, Acosta-Gallegos J, Paredes-Lopez O (2004) Protein and mineral content of a novel collection of wild and weedy common bean (Phaseolus vulgaris L.). J Sci Food Agric 80:1874–1881

    Article  Google Scholar 

  • Hacisalihoglu G, Osturk L, Cakmak I, Welch RM, Kochian L (2004) Genotypic variation in common bean in response to zinc deficiency in calcareous soil. Plant Soil 259:71–83. https://doi.org/10.1023/B:PLSO.0000020941.90028.2c

    Article  CAS  Google Scholar 

  • Hafiz A, Riaz T, Shakoori FR (2017) Metabolic profile of a stored grain pest Trogoderma granarium exposed to deltamethrin Pakistan: J Zool 49(1):183–188

    Google Scholar 

  • Hayat I, Ahmad A, Masud T, Ahmed A, Bashir S (2014) Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Crit Rev Food Sci Nutr 54:580–592. [CrossRef] [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • He FJ, MacGregor GA (2009) A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J Hum Hypertens 23:363–384. https://doi.org/10.1111/j.1399-3054.2006.00646.x

  • Hossain KG, Islam N, Jacob D, Ghavami F et al (2013) Interdependence of genotype and growing site on seed mineral compositions in common bean. Asian J Plant Sci 12:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth B (2014) Biofortification progress briefs, Aug 2014

    Google Scholar 

  • Ibrahim EA, Ramadan WA (2015) Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci Hortic 184:101–115. https://doi.org/10.1016/j.scienta.2014.11.010

    Article  CAS  Google Scholar 

  • Islam FMA, Basford KE, Jara C, Redden RJ, Beebe SE (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol 49:285–293. https://doi.org/10.1023/A:1015510428026

    Article  Google Scholar 

  • Jun S, Shin S, Joung H (2016) Estimation of dietary flavonoid intake and major food sources of Korean adults. Br J Nutr 115:480–489. [CrossRef] [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • Karen V, Armendáriz F, Ibeth MHH, Muñoz-Márquez E, Esteban S (2019) Characterization of Bioactive Compounds, Mineral Content, and Antioxidant Activity in Bean Varieties Grown with Traditional Methods in Oaxaca, Mexico. Antioxidants, 8:26. https://doi.org/10.3390/antiox8010026

  • Katuuramu D, Hart J, Porch T, Grusak M, Glahn R, Cichy K (2018) Genome-wide association analysis of nutritional composition-related traits and iron bioavailability in cooked dry beans (Phaseolus vulgaris L.). Mol Breed 38:44. https://doi.org/10.1007/s11032-018-0798-x

  • Kelly JD (2004) Advances in common bean improvement: some case histories with broader applications. Available at www. actahort.org/books/637/637_11.htm (verified 12 Apr 2007). Acta Hortic (ISHS) 637:99–122

  • Kelly JD, Miklas PN (1999) Marker-assisted selection. In: Singh SP (ed) Developments in plant breeding, vol 7. Common bean improvement in the twenty-first century. Kluwer Academic, Boston

    Google Scholar 

  • Kumar G, Baojun X (2017) Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits, review. Int J Mol Sci 18:2331. https://doi.org/10.3390/ijms18112331

    Article  CAS  Google Scholar 

  • Lin LZ, Harnly JM, Pastor-Corrales MS, Luthria DL (2008) The polyphenolic profiles of common beans (Phaseolus vulgaris L.). Food Chem 107:399–410. [CrossRef] [PubMed]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López A, El-Naggar T, Dueñas M, Ortega T, Estrella I, Hernández T, Gómez-Serranillos MP, Palomino OM, Carretero ME (2013) Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem 138:547–555. [CrossRef] [PubMed]

    Article  PubMed  CAS  Google Scholar 

  • Lyons G, Cakmak I (2012) In: Bruulsema TW, Heffer P, Welch RM et al (eds) Agronomic biofortification of food crops with micronutrients. In fertilizing crops to improve human health: a scientific review. International Plant Nutrition Institute, Paris, pp 97–122

    Google Scholar 

  • Martínez-Ballesta MC, Dominguez-Perles R, Moreno DA, Muries B et al (2010) Minerals in plant food: effect of agricultural practices and role in human health. A Rev Agron Sustain Dev 30:295–309

    Article  CAS  Google Scholar 

  • Matthew WB (2013) Mineral biofortification strategies for food Staples: the example of common bean. J Agric Food Chem 61:8287–8294. https://doi.org/10.1021/jf400774y

    Article  CAS  Google Scholar 

  • Maziero SM, Ribeiro ND, Storck L (2015) Simultaneous selection in beans for architecture, grain yield and minerals concentration. Euphytica 205:369–380. https://doi.org/10.1007/s10681-015-1392-5

    Article  CAS  Google Scholar 

  • Messina V (2014) Nutritional and health benefits of dried beans. Am J Clin Nutr 100(Suppl 1):437S–442S. [CrossRef] [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • Mojica M, Chen K, González de Mejía E (2015) Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV. J Food Sci 80(1):H188–H198. https://doi.org/10.1111/1750-3841.12726

  • Moraghan JT, Grafton K (1999) Seed zinc concentration and the zinc-efficiency trait in navy bean. Soil Sci Soc Am J 63:918–922

    Article  CAS  Google Scholar 

  • Moraghan JT, Padilla J, Etchevers JD, Grafton K, Acosta-Gallegos JA (2002) Iron accumulation in seed of common bean. Plant Soil 246:175–183. https://doi.org/10.1023/A:1020616026728

    Article  CAS  Google Scholar 

  • Morais NM, Ribeiro ND, Storck L, dos Santos PRF et al (2016) Selection of common bean land cultivars based on agronomic performance, cooking time, and mineral concentration. Semina Cienc Agrar 37:1255–1266

    Article  Google Scholar 

  • Moreno-Franco B, León-Latre M, Andrés-Esteban EM, Ordovás JM, Casasnovas JA, Peñalvo JL (2014) Soluble and insoluble dietary fibre intake and risk factors for cvd and metabolic syndrome in middle-aged adults: the AWHS cohort. Atherosclerosis 235:e279–e280. [CrossRef]

    Article  Google Scholar 

  • Mudryj AN, Yu N, Aukema HM (2014) Nutritional and health benefits of pulses. Appl Physiol Nutr Metab 39:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Nchimbi-Msolla S, Tryphone GM (2010) The effects of the environment on iron and zinc concentrations and performance of common bean (Phaseolus vulgaris L.) genotypes. Asian J Plant Sci 9:455–462

    Article  CAS  Google Scholar 

  • Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Towards an integrated linkage map of common bean: 2. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Monasterio JI, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    Article  CAS  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, Tornn A, Cekic C, Bagci A, Ozkan H, Braun HJ, Sayers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152

    Article  CAS  Google Scholar 

  • Paltridge NG, Milham PJ, Ortiz-Monasterio JI, Velu G (2012a) Energy-dispersive X-ray fluorescence spectrometry as a tool for zinc, iron and selenium analysis in whole grain wheat. Plant Soil 361:261–269

    Article  CAS  Google Scholar 

  • Paltridge NG, Palmer LJ, Milham PJ, Guild GE (2012b) Energy-dispersive X-ray fluorescence analysis of zinc and iron concentration in rice and pearl millet grain. Plant Soil 361:251–260

    Article  CAS  Google Scholar 

  • Pereira HS, Del Peloso MJ, Bassinello PZ, Guimarães CM et al (2014) Genetic variability for iron and zinc content in common bean lines and interaction with water availability. Genet Mol Res 13:6773–6785

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Gahutu JB, Tugirimana PL, Boy E, Hurrell R (2012) Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. J Nutr 142:492–497. https://doi.org/10.3945/jn.111.149286

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Gahutu JB, Tugirimana PL, Boy E, Hurrell R (2014) Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. J Nutr 144:1681–1687. https://doi.org/10.3945/jn.114.192989. [PubMed] [CrossRef]

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Boy E, Wirth JP, Hurrell RF (2015) Review: the potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7(2):1144–1173. https://doi.org/10.3390/nu7021144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petry N, Rohner F, Gahutu JB, Campion B, Boy E, Tugirimana PL et al (2016) In Rwandese women with low iron status, iron absorption from low-phytic acid beans and biofortified beans is comparable, but low-phytic acid beans cause adverse gastrointestinal symptoms. J Nutr 146:970–975. https://doi.org/10.3945/jn.115.2

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:S88–S105. https://doi.org/10.2135/cropsci2007.09.0020IPBS

    Article  Google Scholar 

  • Prasad R (2012) Micro mineral nutrient deficiencies in humans, animals and plants and their amelioration. P Natl Acad Sci USA 82:225–233

    CAS  Google Scholar 

  • Prom-u-thai C, Dell B, Thomson G, Rerkssem B (2003) Easy and rapid detection of iron in rice seed. Sci Asia 29:314–317

    Article  Google Scholar 

  • Puertas-Mejía MA, Mosquera-Mosquera N, Rojano B (2016) Study of in vitro antioxidant capacity of Phaseolus vulgaris L. (frijol) by microwave assisted extraction. Rev Cubana Plant Med 21:42–50

    Google Scholar 

  • Ram H, Rashid A, Zhang W, Duarte AP, Phattarakul N, Simunji S et al (2016) Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant Soil 1(403):389–401. https://doi.org/10.1007/s11104-016-2815-3

    Article  CAS  Google Scholar 

  • Ranilla LG, Genovese MI, Lajolo FM (2007) Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.). J Agric Food Chem 55:90–98. [CrossRef] [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • Schoonhovern A, Voysest O (eds) (1991) Common beans: research for crop improvement. C.A.B. Int, Wallingford

    Google Scholar 

  • Siddhuraju P (2006) The antioxidant activity and free radical-scavenging capacity of phenolics of raw and dry heated moth bean (Vigna aconitifolia) (Jacq.) Marechal seed extracts. Food Chem 99:149–157. [CrossRef]

    Article  CAS  Google Scholar 

  • Silva CA, Abreu AFB, Ramalho MAP, Maia LGS (2012) Chemical composition as related to seed color of common bean. Crop Breed Appl Biotechnol 12(2):132–137. https://doi.org/10.1590/S1984-70332012000200006

    Article  CAS  Google Scholar 

  • Singh SP (ed) (1999) Common bean improvement for the twenty-first century. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Steckling S Dem, Ribeiro ND, Arns FD, Mezzomo HC, Possobom MTDF (2017) Genetic diversity and selection of common bean lines based on technological quality and biofortification. Genet Mol Res 16(1):gmr16019527. http://dx.doi.org/10.4238/gmr16019527

  • Talukder ZI, Anderson E, Miklas PN, Blair MW, Osorno J, Dilawari M, Hossain KG (2010) Genetic diversity and selection of genotypes to enhance Zn and Fe content in common bean. Can J Plant Sci 90(1):49–60. https://doi.org/10.4141/CJPS09096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tryphone GM, Msolla N (2010) Diversity of common bean (Phaseolus vulgaris L.) genotypes in iron and zinc contents under greenhouse conditions. Afr J Agric Res 5:738–747

    Google Scholar 

  • Tryphone GM, Nchimbi-Msolla S (2010) Diversity of common bean (Phaseolus vulgaris L.) genotypes in iron and zinc contents under screenhouse conditions. J Agric Res 5(8):738–747. https://doi.org/10.5897/AJAR10.304

    Article  Google Scholar 

  • Velu G, Kulkarni VN, Rai KN, Muralidharan V, Longvah T, Sahrawat KL, Raveendran TS (2006) A rapid method for screening grain iron content in pearl millet. Int Sorghum Millets News 47:158e161

    Google Scholar 

  • Velu G, Bhattacharjee R, Rai KN, Sahrawat KL, Longvah T (2008) A simple and rapid screening protocol for grain Zn content in pearl millet. J SAT Agric Res 48:5e8

    Google Scholar 

  • Voysest O, Valencia M, Amezquita M (1994) Genetic diversity among Latin American Andean and Mesoamerican common bean cultivars. Crop Sci 34:1100–1110

    Article  Google Scholar 

  • Vreugdenhil D, Aarts MGM, Koornneef M, Nelissen H, Ernst WHO (2004) Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ 27:828–839

    Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: productive, sustainable and nutritious food systems to meet human needs. Field Crops Res 60:1–10. https://doi.org/10.1016/S0378-4290(98)00129-4

    Article  Google Scholar 

  • Welch RM, House WA, Beebe S, Cheng Z (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.). J Agric Food Chem 48:3576–3580. https://doi.org/10.1021/jf0000981

    Article  CAS  PubMed  Google Scholar 

  • Westermann DT, Teran H, Munoz-Perea CG, Singh SP (2011) Plant and seed nutrient uptake in common bean in seven organic and conventional production systems. Can J Plant Sci 91:1089–1099. https://doi.org/10.4141/cjps10114

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basavaraja, T., J., S.N.S., Chandora, R., Singh, M., Singh, N.P. (2021). Breeding for Enhanced Nutrition in Common Bean. In: Gupta, D.S., Gupta, S., Kumar, J. (eds) Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-59215-8_8

Download citation

Publish with us

Policies and ethics